TY - JOUR
T1 - Pediatric primary central nervous system germ cell tumors of different prognosis groups show characteristic miRNome traits and chromosome copy number variations
AU - Wang, Hsei Wei
AU - Wu, Yu Hsuan
AU - Hsieh, Jui Yu
AU - Liang, Muh Lii
AU - Chao, Meng En
AU - Liu, Da Jung
AU - Hsu, Ming Ta
AU - Wong, Tai Tong
N1 - Funding Information:
The authors acknowledge Dr. Chih-Hung Jen for technical support, and the array services provided by Microarray & Gene Expression Analysis Core Facility of the National Yang-Ming University VGH Genome Research Center (VYMGC). The Gene Expression Analysis Core Facility is supported by the National Research Program for Genomic Medicine, National Science Council (NSC). We also thank Dr. Ralph Kirby for the language revision of the manuscript. This work is supported by Yang-Ming University (a grant from Ministry of Education, Aim for the Top University Plan), Taipei Veterans General Hospital Reserch Fund, VGHUST Joint research Program, Tsou’s Foundation (V98ER2-003, V98ER2-019, V96C1-133, V97C1-116, V98C1-002, V98S1-017, and 98A-C-T506), NSC (NSC97-3111-B-010-004, NSC98-2320-B-010-020-MY3 and NSC96-2314-B-075-012-MY3), and partly by the National Health Research Institute (NHRI-EX97-9704BI).
PY - 2010/2/24
Y1 - 2010/2/24
N2 - Background: Intracranial pediatric germ cell tumors (GCTs) are rare and heterogeneous neoplasms and vary in histological differentiation, prognosis and clinical behavior. Germinoma and mature teratoma are GCTs that have a good prognosis, while other types of GCTs, termed nongerminomatous malignant germ cell tumors (NGMGCTs), are tumors with an intermediate or poor prognosis. The second group of tumors requires more extensive drug and irradiation treatment regimens. The mechanisms underlying the differences in incidence and prognosis of the various GCT subgroups are unclear.Results: We identified a distinct mRNA profile correlating with GCT histological differentiation and prognosis, and also present in this study the first miRNA profile of pediatric primary intracranial GCTs. Most of the differentially expressed miRNAs were downregulated in germinomas, but miR-142-5p and miR-146a were upregulated. Genes responsible for self-renewal (such as POU5F1 (OCT4), NANOG and KLF4) and the immune response were abundant in germinomas, while genes associated with neuron differentiation, Wnt/β-catenin pathway, invasiveness and epithelial-mesenchymal transition (including SNAI2 (SLUG) and TWIST2) were abundant in NGMGCTs. Clear transcriptome segregation based on patient survival was observed, with malignant NGMGCTs being closest to embryonic stem cells. Chromosome copy number variations (CNVs) at cytobands 4q13.3-4q28.3 and 9p11.2-9q13 correlated with GCT malignancy and clinical risk. Six genes (BANK1, CXCL9, CXCL11, DDIT4L, ELOVL6 and HERC5) within 4q13.3-4q28.3 were more abundant in germinomas.Conclusions: Our results integrate molecular profiles with clinical observations and provide insights into the underlying mechanisms causing GCT malignancy. The genes, pathways and microRNAs identified have the potential to be novel therapeutic targets.
AB - Background: Intracranial pediatric germ cell tumors (GCTs) are rare and heterogeneous neoplasms and vary in histological differentiation, prognosis and clinical behavior. Germinoma and mature teratoma are GCTs that have a good prognosis, while other types of GCTs, termed nongerminomatous malignant germ cell tumors (NGMGCTs), are tumors with an intermediate or poor prognosis. The second group of tumors requires more extensive drug and irradiation treatment regimens. The mechanisms underlying the differences in incidence and prognosis of the various GCT subgroups are unclear.Results: We identified a distinct mRNA profile correlating with GCT histological differentiation and prognosis, and also present in this study the first miRNA profile of pediatric primary intracranial GCTs. Most of the differentially expressed miRNAs were downregulated in germinomas, but miR-142-5p and miR-146a were upregulated. Genes responsible for self-renewal (such as POU5F1 (OCT4), NANOG and KLF4) and the immune response were abundant in germinomas, while genes associated with neuron differentiation, Wnt/β-catenin pathway, invasiveness and epithelial-mesenchymal transition (including SNAI2 (SLUG) and TWIST2) were abundant in NGMGCTs. Clear transcriptome segregation based on patient survival was observed, with malignant NGMGCTs being closest to embryonic stem cells. Chromosome copy number variations (CNVs) at cytobands 4q13.3-4q28.3 and 9p11.2-9q13 correlated with GCT malignancy and clinical risk. Six genes (BANK1, CXCL9, CXCL11, DDIT4L, ELOVL6 and HERC5) within 4q13.3-4q28.3 were more abundant in germinomas.Conclusions: Our results integrate molecular profiles with clinical observations and provide insights into the underlying mechanisms causing GCT malignancy. The genes, pathways and microRNAs identified have the potential to be novel therapeutic targets.
UR - http://www.scopus.com/inward/record.url?scp=77949920316&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77949920316&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-11-132
DO - 10.1186/1471-2164-11-132
M3 - Article
C2 - 20178649
AN - SCOPUS:77949920316
SN - 1471-2164
VL - 11
JO - BMC Genomics
JF - BMC Genomics
IS - 1
M1 - 132
ER -