TY - JOUR
T1 - Paxillin predicts survival and relapse in non-small cell lung cancer by microRNA-218 targeting
AU - Wu, De Wei
AU - Cheng, Ya Wen
AU - Wang, John
AU - Chen, Chih Yi
AU - Lee, Huei
PY - 2010/12/15
Y1 - 2010/12/15
N2 - Paxillin (PXN) gene mutations are associated with lung adenocarcinoma progression and PXN is known to be a target gene of microRNA-218 (miR-218). On this basis, we hypothesized that PXN overexpression via miR-218 suppression may promote tumor progression and metastasis and that PXN may predict survival and relapse in non-small cell lung cancer (NSCLC). Expression of miR-218 and PXN in 124 surgically resected lung tumors were evaluated by real-time PCR and immunohistochemical analysis. The prognostic value of miR-218 and PXN expression on overall survival (OS) and relapse-free survival (RFS) was analyzed by the Kaplan-Meier test and Cox regression analysis. miR-218 expression in lung tumors was negatively associated with PXN expression. Multivariate analyses showed that PXN and miR-218 might independently predict OS and RFS, respectively, in NSCLC. Moreover, patients with low miR-218 combined with PXN-positive had the worst OS and RFS among the 4 combinations. In a cell model, PXN was negatively regulated by miR-218 and cell proliferation, invasion, and soft agar colony formation were enhanced by PXN overexpression induced by miR-218 suppression. Taken together, our findings suggest that PXN overexpression induced by miR-218 suppression is an independent predictor of survival and relapse in NSCLC, highlighting PXN as a potential therapeutic target to improve clinical outcomes in this disease.
AB - Paxillin (PXN) gene mutations are associated with lung adenocarcinoma progression and PXN is known to be a target gene of microRNA-218 (miR-218). On this basis, we hypothesized that PXN overexpression via miR-218 suppression may promote tumor progression and metastasis and that PXN may predict survival and relapse in non-small cell lung cancer (NSCLC). Expression of miR-218 and PXN in 124 surgically resected lung tumors were evaluated by real-time PCR and immunohistochemical analysis. The prognostic value of miR-218 and PXN expression on overall survival (OS) and relapse-free survival (RFS) was analyzed by the Kaplan-Meier test and Cox regression analysis. miR-218 expression in lung tumors was negatively associated with PXN expression. Multivariate analyses showed that PXN and miR-218 might independently predict OS and RFS, respectively, in NSCLC. Moreover, patients with low miR-218 combined with PXN-positive had the worst OS and RFS among the 4 combinations. In a cell model, PXN was negatively regulated by miR-218 and cell proliferation, invasion, and soft agar colony formation were enhanced by PXN overexpression induced by miR-218 suppression. Taken together, our findings suggest that PXN overexpression induced by miR-218 suppression is an independent predictor of survival and relapse in NSCLC, highlighting PXN as a potential therapeutic target to improve clinical outcomes in this disease.
UR - http://www.scopus.com/inward/record.url?scp=78650409847&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78650409847&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-10-2341
DO - 10.1158/0008-5472.CAN-10-2341
M3 - Article
C2 - 21159652
AN - SCOPUS:78650409847
SN - 0008-5472
VL - 70
SP - 10392
EP - 10401
JO - Cancer Research
JF - Cancer Research
IS - 24
ER -