Pain Monitoring Using Heart Rate Variability and Photoplethysmograph-Derived Parameters by Binary Logistic Regression

D. F. Jhang, Y. S. Chu, J. H. Cai, Y. Y. Tai, C. C. Chuang

Research output: Contribution to journalReview articlepeer-review

1 Citation (Scopus)


Purpose: To construct a pain classification model using binary logistic regression to calculate pain probability and monitor pain based on heart rate variability (HRV) and photoplethysmography (PPG) parameters. Methods: Heat stimulation was used to simulate pain for modeling the pain generation process, and electrocardiography and PPG signals were recorded simultaneously. After signal analysis, statistical analysis was performed using SPSS to determine the parameters that were significant for pain. Thereafter, a pain classification model with HRV and PPG parameters was established using binary logistic regression. Results: The sensitivity and specificity of the pain classification model were 60.0% and 72.0%, respectively. When pain occurred, the probability calculated using the pain classification model increased from < 50% to > 50%. When the pain was relieved, the probability decreased to < 50%. The probability of pain was consistent with the numeric rating scale value, which indicated that the model can correctly determine the presence of pain. Conclusion: This pain classification model has sufficient robustness and adaptability to be applied to different healthy people for classification and monitoring. This model is helpful in establishing a real-time pain monitoring system to improve pain management for patients in the postoperative intensive care unit and patient-controlled analgesia and provide a reference for doctors regarding medication.

Original languageEnglish
Pages (from-to)669-677
Number of pages9
JournalJournal of Medical and Biological Engineering
Issue number5
Publication statusPublished - Oct 2021


  • Binary logistic regression
  • Classification
  • Heart rate variability
  • Pain monitoring
  • Photoplethysmography

ASJC Scopus subject areas

  • Biomedical Engineering


Dive into the research topics of 'Pain Monitoring Using Heart Rate Variability and Photoplethysmograph-Derived Parameters by Binary Logistic Regression'. Together they form a unique fingerprint.

Cite this