TY - JOUR
T1 - Orexin-A directly depolarizes dorsomedial hypothalamic neurons, including those innervating the rostral ventrolateral medulla
AU - Li, Tzu Ling
AU - Lee, Yen Hsien
AU - Wu, Feng Hsu
AU - Hwang, Ling Ling
N1 - Funding Information:
This study was supported by the Ministry of Science and Technology, Taiwan ( MOST 105-2320-B-038-060 and MOST 107-2320-B-038-053 ).
Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/5/15
Y1 - 2021/5/15
N2 - The dorsomedial hypothalamus (DMH) receives dense orexinergic innervation. Intra-DMH application of orexins increases arterial pressure and heart rate in rats. We studied the effects of orexin-A on DMH neurons, including those innervating the medullary cardiovascular center, the rostral ventrolateral medulla (RVLM), by using whole-cell recordings in brain slices. In the presence of tetrodotoxin, orexin-A (30–1000 nM) depolarized 56% of DMH neurons (EC50 82.4 ± 4.4 nM). Under voltage-clamp recording, orexin-A (300 nM) induced three types of responses characterized by different current-voltage relationships, namely unchanged, increased, and decreased slope conductance in 68%, 14%, and 18% of orexin-A-responsive neurons, respectively. The reversal potential of the decreased-conductance response was near the equilibrium potential of K+ and became more positive in a high-K+ solution, suggesting that K+ conductance blockade is the underlying mechanism. In a low-Na+ solution, unchanged-, increased-, and decreased-conductance responses were observed in 56%, 11%, and 33% of orexin-A-responsive neurons, respectively, implying that a non-selective cation current (NSCC) underlies orexin-A-induced responses in a small population of DMH neurons. KBR-7943 (70 μM), an inhibitor of Na+-Ca2+ exchanger (NCX), suppressed orexin-A-induced depolarization in 7 of 10 neurons. In the presence of KBR-7943, the majority of orexin-A-responsive neurons exhibited decreased-conductance responses. These findings suggest that NCX activation may underlie orexin-A-induced depolarization in the majority of orexin-responsive DMH neurons. Of 19 RVLM-projecting DMH neurons identified by retrograde labeling, 17 (90%) were orexin-A responsive. In conclusion, orexin-A directly excited over half of DMH neurons, including those innervating the RVLM, through decreasing K+ conductance, activating NCX, and/or increasing NSCC.
AB - The dorsomedial hypothalamus (DMH) receives dense orexinergic innervation. Intra-DMH application of orexins increases arterial pressure and heart rate in rats. We studied the effects of orexin-A on DMH neurons, including those innervating the medullary cardiovascular center, the rostral ventrolateral medulla (RVLM), by using whole-cell recordings in brain slices. In the presence of tetrodotoxin, orexin-A (30–1000 nM) depolarized 56% of DMH neurons (EC50 82.4 ± 4.4 nM). Under voltage-clamp recording, orexin-A (300 nM) induced three types of responses characterized by different current-voltage relationships, namely unchanged, increased, and decreased slope conductance in 68%, 14%, and 18% of orexin-A-responsive neurons, respectively. The reversal potential of the decreased-conductance response was near the equilibrium potential of K+ and became more positive in a high-K+ solution, suggesting that K+ conductance blockade is the underlying mechanism. In a low-Na+ solution, unchanged-, increased-, and decreased-conductance responses were observed in 56%, 11%, and 33% of orexin-A-responsive neurons, respectively, implying that a non-selective cation current (NSCC) underlies orexin-A-induced responses in a small population of DMH neurons. KBR-7943 (70 μM), an inhibitor of Na+-Ca2+ exchanger (NCX), suppressed orexin-A-induced depolarization in 7 of 10 neurons. In the presence of KBR-7943, the majority of orexin-A-responsive neurons exhibited decreased-conductance responses. These findings suggest that NCX activation may underlie orexin-A-induced depolarization in the majority of orexin-responsive DMH neurons. Of 19 RVLM-projecting DMH neurons identified by retrograde labeling, 17 (90%) were orexin-A responsive. In conclusion, orexin-A directly excited over half of DMH neurons, including those innervating the RVLM, through decreasing K+ conductance, activating NCX, and/or increasing NSCC.
KW - Autonomic neuroscience
KW - Brain stem
KW - Cardiovascular function
KW - Hypocretin
KW - Hypothalamus
KW - Orexin
UR - http://www.scopus.com/inward/record.url?scp=85103327031&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103327031&partnerID=8YFLogxK
U2 - 10.1016/j.ejphar.2021.174033
DO - 10.1016/j.ejphar.2021.174033
M3 - Article
C2 - 33727058
AN - SCOPUS:85103327031
SN - 0014-2999
VL - 899
JO - European Journal of Pharmacology
JF - European Journal of Pharmacology
M1 - 174033
ER -