TY - JOUR
T1 - Ontological recommendation multi-agent for Tainan City travel
AU - Lee, Chang-Shing
AU - Chang, Yung-Chun
AU - Wang, Mei-Hui
PY - 2009
Y1 - 2009
N2 - Due to the gradual increase in travel, the travel agent plays an important role in both planning and recommending a personalized travel route. Tainan City, located in the southern Taiwan, is famous for its abundant historic sites and delicious snack food, and it has been one of the top tourist attractions in Taiwan for years. In this paper, we propose an ontological recommendation multi-agent for Tainan City travel. The core technologies of the agent contain the ontology model, fuzzy inference mechanism, and ant colony optimization. The proposed agent can recommend the tourist a personalized travel route to enjoy Tainan City according to the tourist’s requirements. It includes a context decision agent and a travel route recommendation agent. First, the context decision agent finds a suitable location distance, counts the context relation, and infers the context information based on the tourist’s requirements and Tainan City travel ontology. Next, the travel route recommendation agent is responsible for finding a personalized tour and plotting this travel route on the Google Map. Finally, the tourist can follow the personalized travel route to enjoy the cultural heritage and the local gourmet food during his stay at Tainan City. The experimental results show that the proposed approach can effectively recommend a travel route matched with the tourist’s requirements.
AB - Due to the gradual increase in travel, the travel agent plays an important role in both planning and recommending a personalized travel route. Tainan City, located in the southern Taiwan, is famous for its abundant historic sites and delicious snack food, and it has been one of the top tourist attractions in Taiwan for years. In this paper, we propose an ontological recommendation multi-agent for Tainan City travel. The core technologies of the agent contain the ontology model, fuzzy inference mechanism, and ant colony optimization. The proposed agent can recommend the tourist a personalized travel route to enjoy Tainan City according to the tourist’s requirements. It includes a context decision agent and a travel route recommendation agent. First, the context decision agent finds a suitable location distance, counts the context relation, and infers the context information based on the tourist’s requirements and Tainan City travel ontology. Next, the travel route recommendation agent is responsible for finding a personalized tour and plotting this travel route on the Google Map. Finally, the tourist can follow the personalized travel route to enjoy the cultural heritage and the local gourmet food during his stay at Tainan City. The experimental results show that the proposed approach can effectively recommend a travel route matched with the tourist’s requirements.
KW - Ontology
KW - Agent
KW - Fuzzy inference
KW - Ant colony optimization
KW - City travel
U2 - 10.1016/j.eswa.2008.08.016
DO - 10.1016/j.eswa.2008.08.016
M3 - Article
SN - 0957-4174
VL - 36
SP - 6740
EP - 6753
JO - Expert Systems with Applications
JF - Expert Systems with Applications
IS - 3
ER -