Nrf2/HO-1 partially regulates cytoprotective effects of carbon monoxide against urban particulate matter-induced inflammatory responses in oral keratinocytes

Ching Yi Cheng, Thi Thuy Tien Vo, Wei Ning Lin, Hsiang Wei Huang, Chu Chun Chuang, Pei Ming Chu, I. Ta Lee

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Introduction: Exposure to airborne particulate matter (PM) increases the proportion of oral inflammatory diseases. During the formation of inflammatory conditions, the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome activation plays an important regulator. Carbon monoxide (CO) arising from heme degradation, catalyzed particularly by heme oxygenase-1 (HO-1), has been shown to own cytoprotective effects including anti-inflammation and antioxidant. Here, we determined the novel mechanisms of carbon monoxide releasing molecule-2 (CORM-2) on PM-induced inflammatory responses in human oral keratinocytes (HOKs). Methods: The effects of CORM-2 on the expression of various inflammatory proteins induced by PM were determined by Western blot, real-time PCR, promoter assay, and ELISA. The involvement of signaling molecules in these responses was studied by using the selective pharmacological inhibitors and siRNAs. Results: We proved that PM enhanced C-reactive protein (CRP) levels, NLRP3 inflammasome and caspase-1 activation, and IL-1β release, which were reduced by preincubation with CORM-2. Transfection with PKCα siRNA and preincubation with the ROS scavenger (N-acetyl-cysteine, NAC), an inhibitor of NADPH oxidase (diphenyleneiodonium, DPI), or the mitochondria-specific superoxide scavenger (MitoTEMPO) inhibited PM-mediated inflammatory responses. In addition, PM-regulated PKCα and NADPH oxidase activation as well as NADPH oxidase- and mitochondria-derived ROS generation were inhibited by CORM-2, but not inactivate CORM-2 (iCORM-2) pretreatment. At the end, we confirmed that CORM-2 improved PM-induced inflammatory responses via the induction of Nrf2 activation and HO-1 expression. Conclusion: We suggest that CORM-2 inhibits PM-induced inflammatory responses in HOKs via the inhibition of PKCα/ROS/NLRP3 inflammasome activation combined with the induction of Nrf2/HO-1 expression.

Original languageEnglish
Article number155185
JournalCytokine
Volume133
DOIs
Publication statusPublished - Sept 2020

Keywords

  • Carbon monoxide
  • NLRP3 inflammasome
  • Oral mucosal
  • Particulate matter
  • Reactive oxygen species

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology
  • Biochemistry
  • Hematology
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Nrf2/HO-1 partially regulates cytoprotective effects of carbon monoxide against urban particulate matter-induced inflammatory responses in oral keratinocytes'. Together they form a unique fingerprint.

Cite this