Abstract

The nicotinic acetylcholine receptor (nAChR) was first characterized in 1970 as a membrane receptor of a neurotransmitter and an ion channel. nAChRs have been shown to be involved in smoking-induced cancer formation in multiple types of human cancer cells. In vitro and in vivo animal studies have shown that homopentameric nAChR inhibitors, such as methyllycaconitine and α-Bgtx, can attenuate nicotine-induced proliferative, angiogenic, and metastatic effects in lung, colon, and bladder cancer cells. Recent publications have shown that α9-nAChR is important for breast cancer formation, and in many in vivo studies, α9-nAChR-specific antagonists (e.g., α-ImI, α-ImI, Vc1.1, RgIA, and It14a) produced an analgesic effect. Vc1.1 functions in a variety of animal pain models and currently has entered phase II clinical trials. For cancer therapy, natural compounds such as garcinol and EGCG have been found to block nicotine- and estrogen-induced breast cancer cell proliferation through inhibition of the α9-nAChR signaling pathway. A detailed investigation of the carcinogenic effects of nAChRs and their specific antagonists would enhance our understanding of their value as targets for clinical translation.

Original languageEnglish
Pages (from-to)3533-3541
Number of pages9
JournalClinical Cancer Research
Volume17
Issue number11
DOIs
Publication statusPublished - Jun 1 2011

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Nicotinic acetylcholine receptor-based blockade: Applications of molecular targets for cancer therapy'. Together they form a unique fingerprint.

Cite this