TY - JOUR
T1 - Neurosteroid Allopregnanolone Suppresses Median Nerve Injury-induced Mechanical Hypersensitivity and Glial Extracellular Signal-regulated Kinase Activation through γ-Aminobutyric Acid Type A Receptor Modulation in the Rat Cuneate Nucleus
AU - Huang, Chun Ta
AU - Chen, Seu Hwa
AU - Lue, June Horng
AU - Chang, Chi Fen
AU - Wen, Wen Hsin
AU - Tsai, Yi Ju
N1 - Publisher Copyright:
Copyright © 2016, the American Society of Anesthesiologists, Inc. Wolters Kluwer Health, Inc. All Rights Reserved.
PY - 2016/12/1
Y1 - 2016/12/1
N2 - Background: Mechanisms underlying neuropathic pain relief by the neurosteroid allopregnanolone remain uncertain. We investigated if allopregnanolone attenuates glial extracellular signal-regulated kinase (ERK) activation in the cuneate nucleus (CN) concomitant with neuropathic pain relief in median nerve chronic constriction injury (CCI) model rats. Methods: We examined the time course and cellular localization of phosphorylated ERK (p-ERK) in CN after CCI. We subsequently employed microinjection of a mitogen-activated protein kinase kinase (ERK kinase) inhibitor, PD98059, to clarify the role of ERK phosphorylation in neuropathic pain development. Furthermore, we explored the effects of allopregnanolone (by mouth), intra-CN microinjection of γ-aminobutyric acid type A receptor antagonist (bicuculline) or γ-aminobutyric acid type B receptor antagonist (phaclofen) plus allopregnanolone, and allopregnanolone synthesis inhibitor (medroxyprogesterone; subcutaneous) on ERK activation and CCI-induced behavioral hypersensitivity. Results: At 7 days post-CCI, p-ERK levels in ipsilateral CN were significantly increased and reached a peak. PD98059 microinjection into the CN 1 day after CCI dose-dependently attenuated injury-induced behavioral hypersensitivity (withdrawal threshold [mean ± SD], 7.4 ± 1.1, 8.7 ± 1.0, and 10.3 ± 0.8 g for 2.0, 2.5, and 3.0 mM PD98059, respectively, at 7 days post-CCI; n = 6 for each dose). Double immunofluorescence showed that p-ERK was localized to both astrocytes and microglia. Allopregnanolone significantly diminished CN p-ERK levels, glial activation, proinflammatory cytokines, and behavioral hypersensitivity after CCI. Bicuculline, but not phaclofen, blocked all effects of allopregnanolone. Medroxyprogesterone treatment reduced endogenous CN allopregnanolone and exacerbated nerve injury-induced neuropathic pain. Conclusions: Median nerve injury-induced CN glial ERK activation modulated the development of behavioral hypersensitivity. Allopregnanolone attenuated glial ERK activation and neuropathic pain via γ-aminobutyric acid type A receptors. Reduced endogenous CN allopregnanolone after medroxyprogesterone administration rendered rats more susceptible to CCI-induced neuropathy.
AB - Background: Mechanisms underlying neuropathic pain relief by the neurosteroid allopregnanolone remain uncertain. We investigated if allopregnanolone attenuates glial extracellular signal-regulated kinase (ERK) activation in the cuneate nucleus (CN) concomitant with neuropathic pain relief in median nerve chronic constriction injury (CCI) model rats. Methods: We examined the time course and cellular localization of phosphorylated ERK (p-ERK) in CN after CCI. We subsequently employed microinjection of a mitogen-activated protein kinase kinase (ERK kinase) inhibitor, PD98059, to clarify the role of ERK phosphorylation in neuropathic pain development. Furthermore, we explored the effects of allopregnanolone (by mouth), intra-CN microinjection of γ-aminobutyric acid type A receptor antagonist (bicuculline) or γ-aminobutyric acid type B receptor antagonist (phaclofen) plus allopregnanolone, and allopregnanolone synthesis inhibitor (medroxyprogesterone; subcutaneous) on ERK activation and CCI-induced behavioral hypersensitivity. Results: At 7 days post-CCI, p-ERK levels in ipsilateral CN were significantly increased and reached a peak. PD98059 microinjection into the CN 1 day after CCI dose-dependently attenuated injury-induced behavioral hypersensitivity (withdrawal threshold [mean ± SD], 7.4 ± 1.1, 8.7 ± 1.0, and 10.3 ± 0.8 g for 2.0, 2.5, and 3.0 mM PD98059, respectively, at 7 days post-CCI; n = 6 for each dose). Double immunofluorescence showed that p-ERK was localized to both astrocytes and microglia. Allopregnanolone significantly diminished CN p-ERK levels, glial activation, proinflammatory cytokines, and behavioral hypersensitivity after CCI. Bicuculline, but not phaclofen, blocked all effects of allopregnanolone. Medroxyprogesterone treatment reduced endogenous CN allopregnanolone and exacerbated nerve injury-induced neuropathic pain. Conclusions: Median nerve injury-induced CN glial ERK activation modulated the development of behavioral hypersensitivity. Allopregnanolone attenuated glial ERK activation and neuropathic pain via γ-aminobutyric acid type A receptors. Reduced endogenous CN allopregnanolone after medroxyprogesterone administration rendered rats more susceptible to CCI-induced neuropathy.
UR - http://www.scopus.com/inward/record.url?scp=84988665969&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84988665969&partnerID=8YFLogxK
U2 - 10.1097/ALN.0000000000001360
DO - 10.1097/ALN.0000000000001360
M3 - Article
C2 - 27662401
AN - SCOPUS:84988665969
SN - 0003-3022
VL - 125
SP - 1202
EP - 1218
JO - Anesthesiology
JF - Anesthesiology
IS - 6
ER -