Nano-Diamino-Tetrac (NDAT) Enhances Resveratrol-Induced Antiproliferation by Action on the RRM2 Pathway in Colorectal Cancers

André Wendindondé Nana, Szu Yuan Wu, Yu Chen Sh Yang, Yu Tang Chin, Tsai Mu Cheng, Yih Ho, Wen Shan Li, Yu Min Liao, Yi Ru Chen, Ya Jung Shih, Yun Ru Liu, Jens Pedersen, Sandra Incerpi, Aleck Hercbergs, Leroy F. Liu, Jacqueline Whang-Peng, Paul J. Davis, Hung Yun Lin

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

Cancer resistance to chemotherapeutic agents is a major issue in the management of cancer patients. Overexpression of the ribonucleotide reductase regulatory subunit M2 (RRM2) has been associated with aggressive cancer behavior and chemoresistance. Nano-diamino-tetrac (NDAT) is a nanoparticulate derivative of tetraiodothyroacetic acid (tetrac), which exerts anticancer properties via several mechanisms and downregulates RRM2 gene expression in cancer cells. Resveratrol is a stilbenoid phytoalexin which binds to a specific site on the cell surface integrin αvβ3 to trigger cancer cell death via nuclear translocation of COX-2. Here we report that resveratrol paradoxically activates RRM2 gene expression and protein translation in colon cancer cells. This unanticipated effect inhibits resveratrol-induced COX-2 nuclear accumulation. RRM2 downregulation, whether achieved by RNA interference or treatment with NDAT, enhanced resveratrol-induced COX-2 gene expression and nuclear uptake which is essential to integrin αvβ3-mediated-resveratrol-induced antiproliferation in cancer cells. Elsewhere, NDAT downregulated resveratrol-induced RRM2 expression in vivo but potentiated the anticancer effect of the stilbene. These findings suggest that RRM2 appears as a cancer cell defense mechanism which can hinder the anticancer effect of the stilbene via the integrin αvβ3 axis. Furthermore, the antagonistic effect of RRM2 against resveratrol is counteracted by the administration of NDAT.

Original languageEnglish
Pages (from-to)349-360
Number of pages12
JournalHormones and Cancer
Volume9
Issue number5
DOIs
Publication statusPublished - Oct 1 2018

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Oncology
  • Endocrinology
  • Endocrine and Autonomic Systems
  • Cancer Research

Fingerprint

Dive into the research topics of 'Nano-Diamino-Tetrac (NDAT) Enhances Resveratrol-Induced Antiproliferation by Action on the RRM2 Pathway in Colorectal Cancers'. Together they form a unique fingerprint.

Cite this