TY - JOUR
T1 - MPT0B098, a novel microtubule inhibitor that destabilizes the hypoxia-inducible factor-1α mRNA through decreasing nuclear-cytoplasmic translocation of RNA-binding protein HuR
AU - Cheng, Yun Ching
AU - Liou, Jing Ping
AU - Kuo, Ching Chuan
AU - Lai, Wen Yang
AU - Shih, Kuang Hsing
AU - Chang, Chi Yen
AU - Pan, Wen Yu
AU - Tseng, Joseph T.
AU - Chang, Jang Yang
N1 - Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2013/7
Y1 - 2013/7
N2 - Microtubule inhibitors have been shown to inhibit hypoxia-inducible factor-1α (HIF-1α) expression through inhibition translation or enhancing protein degradation. Little is known of the effect of microtubule inhibitors on the stability of HIF-1α mRNA. We recently discovered a novel indoline-sulfonamide compound, 7-arylindoline-1-benzene-sulfonamide (MPT0B098), as a potent microtubule inhibitor through binding to the colchicine-binding site of tubulin. MPT0B098 is active against the growth of various human cancer cells, including chemoresistant cells with IC50 values ranging from 70 to 150 nmol/L. However, normal cells, such as human umbilical vein endothelial cells (HUVEC), exhibit less susceptibility to the inhibitory effect of MPT0B098 with IC50 of 510 nmol/L. Similar to typical microtubule inhibitors, MPT0B098 arrests cells in the G2-M phase and subsequently induces cell apoptosis. In addition, MPT0B098 effectively suppresses VEGF-induced cell migration and capillary-like tube formation of HUVECs. Distinguished from other microtubule inhibitors, MPT0B098 not only inhibited the expression levels of HIF-1α protein but also destabilized HIF-1α mRNA. The mechanism of causing unstable of HIF-1α mRNA by MPT0B098 is through decreasing RNA-binding protein, HuR, translocation from the nucleus to the cytoplasm. Notably, MPT0B098 effectively suppresses tumor growth and microvessel density of tumor specimens in vivo. Taken together, our results provide a novel mechanism of inhibiting HIF-1α of a microtubule inhibitor MPT0B098. MPT0B098 is a promising anticancer drug candidate with potential for the treatment of human malignancies.
AB - Microtubule inhibitors have been shown to inhibit hypoxia-inducible factor-1α (HIF-1α) expression through inhibition translation or enhancing protein degradation. Little is known of the effect of microtubule inhibitors on the stability of HIF-1α mRNA. We recently discovered a novel indoline-sulfonamide compound, 7-arylindoline-1-benzene-sulfonamide (MPT0B098), as a potent microtubule inhibitor through binding to the colchicine-binding site of tubulin. MPT0B098 is active against the growth of various human cancer cells, including chemoresistant cells with IC50 values ranging from 70 to 150 nmol/L. However, normal cells, such as human umbilical vein endothelial cells (HUVEC), exhibit less susceptibility to the inhibitory effect of MPT0B098 with IC50 of 510 nmol/L. Similar to typical microtubule inhibitors, MPT0B098 arrests cells in the G2-M phase and subsequently induces cell apoptosis. In addition, MPT0B098 effectively suppresses VEGF-induced cell migration and capillary-like tube formation of HUVECs. Distinguished from other microtubule inhibitors, MPT0B098 not only inhibited the expression levels of HIF-1α protein but also destabilized HIF-1α mRNA. The mechanism of causing unstable of HIF-1α mRNA by MPT0B098 is through decreasing RNA-binding protein, HuR, translocation from the nucleus to the cytoplasm. Notably, MPT0B098 effectively suppresses tumor growth and microvessel density of tumor specimens in vivo. Taken together, our results provide a novel mechanism of inhibiting HIF-1α of a microtubule inhibitor MPT0B098. MPT0B098 is a promising anticancer drug candidate with potential for the treatment of human malignancies.
UR - http://www.scopus.com/inward/record.url?scp=84880049488&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84880049488&partnerID=8YFLogxK
U2 - 10.1158/1535-7163.MCT-12-0778
DO - 10.1158/1535-7163.MCT-12-0778
M3 - Article
C2 - 23619299
AN - SCOPUS:84880049488
SN - 1535-7163
VL - 12
SP - 1202
EP - 1212
JO - Molecular Cancer Therapeutics
JF - Molecular Cancer Therapeutics
IS - 7
ER -