Abstract
Motivation: As protein structure database expands, protein loop modeling remains an important and yet challenging problem. Knowledge-based protein loop prediction methods have met with two challenges in methodology development: (1) loop boundaries in protein structures are frequently problematic in constructing length-dependent loop databases for protein loop predictions; (2) knowledge-based modeling of loops of unknown structure requires both aligning a query loop sequence to loop templates and ranking the loop sequence-template matches. Results: We developed a knowledge-based loop prediction method that circumvents the need of constructing hierarchically clustered length-dependent loop libraries. The method first predicts local structural fragments of a query loop sequence and then structurally aligns the predicted structural fragments to a set of non-redundant loop structural templates regardless of the loop length. The sequence-template alignments are then quantitatively evaluated with an artificial neural network model trained on a set of predictions with known outcomes. Prediction accuracy benchmarks indicated that the novel procedure provided an alternative approach overcoming the challenges of knowledge-based loop prediction.
Original language | English |
---|---|
Pages (from-to) | 2836-2842 |
Number of pages | 7 |
Journal | Bioinformatics |
Volume | 23 |
Issue number | 21 |
DOIs | |
Publication status | Published - Nov 2007 |
Externally published | Yes |
ASJC Scopus subject areas
- Statistics and Probability
- Biochemistry
- Molecular Biology
- Computer Science Applications
- Computational Theory and Mathematics
- Computational Mathematics