@article{0b305c9ba6a844989d57d3904af1ebd2,
title = "Minocycline attenuates 5-fluorouracil-induced small intestinal mucositis in mouse model",
abstract = "Minocycline exerts anti-inflammatory and anti-apoptotic effects distinct from its antimicrobial function. In this study we investigated the effect of this drug on chemotherapy-induced gut damage. Body weight loss results, diarrhea scores, and villi measurements showed that minocycline attenuated the severity of intestinal mucositis induced by 5-fluorouracil (5-FU). Minocycline repressed the expression of TNF-α, IL-1β, and iNOS, decreased the apoptotic index, and inhibited poly(ADP-ribose) polymerase-1 (PARP-1) activity in the mouse small intestine. In vitro experiments showed that minocycline suppressed the upregulation of PARP-1 activity in enterocyte IEC-6 cells treated with 5-FU. In addition, minocycline treatment appeared to enhance the antitumor effects of 5-FU in tumor CT-26 xenograft mice. Our results indicate that minocycline protects mice from gut injury induced by 5-FU and enhances the antitumor effects of 5-FU in xenograft mice. These observations suggest that minocycline treatment may benefit patients undergoing standard cancer chemotherapy by alleviating chemical-associated intestinal mucositis. {\textcopyright} 2009 Elsevier Inc. All rights reserved.",
keywords = "5-Fluorouracil, Chemotherapy, Minocycline, Mucositis, fluorouracil, inducible nitric oxide synthase, interleukin 1beta, minocycline, nicotinamide adenine dinucleotide adenosine diphosphate ribosyltransferase 1, poly(adenosine diphosphate ribose), tumor necrosis factor alpha, animal cell, animal experiment, animal model, animal tissue, antineoplastic activity, article, body weight, cell proliferation, colon cancer, controlled study, diarrhea, disease severity, drug effect, drug potentiation, enzyme activity, in vitro study, intestine villus, male, mouse, mucosa inflammation, nonhuman, priority journal, protein expression, small intestine disease, small intestine mucositis, treatment response, upregulation, Animals, Anti-Inflammatory Agents, Non-Steroidal, Antimetabolites, Antineoplastic, Apoptosis, Cell Proliferation, Cytokines, Disease Models, Animal, Fluorouracil, Intestine, Small, Male, Mice, Mice, Inbred BALB C, Neoplasms, Nitric Oxide Synthase Type II, Poly(ADP-ribose) Polymerases, Xenograft Model Antitumor Assays, Mus",
author = "Tien-Yu Huang and Heng-Cheng Chu and Yi-Ling Lin and Whae-Hong Ho and Hsien-San Hou and You-Chen Chao and Ching-Len Liao",
note = "被引用次數:20 Export Date: 22 March 2016 CODEN: BBRCA 通訊地址: Liao, C.-L.; Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan; 電子郵件: chnglen@ms1.hinet.net 化學物質/CAS: fluorouracil, 51-21-8; inducible nitric oxide synthase, 501433-35-8; minocycline, 10118-90-8, 11006-27-2, 13614-98-7; poly(adenosine diphosphate ribose), 26656-46-2; Anti-Inflammatory Agents, Non-Steroidal; Antimetabolites, Antineoplastic; Cytokines; Fluorouracil, 51-21-8; Minocycline, 10118-90-8; Nitric Oxide Synthase Type II, 1.14.13.39; Nos2 protein, mouse, 1.14.13.39; Poly(ADP-ribose) Polymerases, 2.4.2.30; poly(ADP-ribose)polymerase-1, mouse, 2.4.2.30 製造商: Sigma Aldrich 參考文獻: Benson III, A.B., Ajani, J.A., Catalano, R.B., Engelking, C., Kornblau, S.M., Martenson Jr., J.A., McCallum, R., Wadler, S., Recommended guidelines for the treatment of cancer treatment-induced diarrhea (2004) J. Clin. Oncol., 22, pp. 2918-2926; Efficacy of adjuvant fluorouracil and folinic acid in colon cancer, International Multicentre Pooled Analysis of Colon Cancer Trials (IMPACT) investigators (1995) Lancet, 345, pp. 939-944; Bowen, J.M., Gibson, R.J., Cummins, A.G., Keefe, D.M., Intestinal mucositis: the role of the Bcl-2 family, p53 and caspases in chemotherapy-induced damage (2006) Support. Care Cancer, 14, pp. 713-731; Pritchard, D.M., Potten, C.S., Hickman, J.A., The relationships between p53-dependent apoptosis, inhibition of proliferation, and 5-fluorouracil-induced histopathology in murine intestinal epithelia (1998) Cancer Res., 58, pp. 5453-5465; Sonis, S.T., The pathobiology of mucositis (2004) Nat. Rev. Cancer, 4, pp. 277-284; Leitao, R.F., Ribeiro, R.A., Bellaguarda, E.A., Macedo, F.D., Silva, L.R., Oria, R.B., Vale, M.L., Brito, G.A., Role of nitric oxide on pathogenesis of 5-fluorouracil induced experimental oral mucositis in hamster (2007) Cancer Chemother. Pharmacol., 59, pp. 603-612; Huang, F.S., Kemp, C.J., Williams, J.L., Erwin, C.R., Warner, B.W., Role of epidermal growth factor and its receptor in chemotherapy-induced intestinal injury (2002) Am. J. Physiol. Gastrointest. Liver Physiol., 282, pp. G432-G442; Farrell, C.L., Bready, J.V., Rex, K.L., Chen, J.N., DiPalma, C.R., Whitcomb, K.L., Yin, S., Lacey, D.L., Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality (1998) Cancer Res., 58, pp. 933-939; Sapadin, A.N., Fleischmajer, R., Tetracyclines: nonantibiotic properties and their clinical implications (2006) J. Am. Acad. Dermatol., 54, pp. 258-265; Sriram, K., Miller, D.B., O'Callaghan, J.P., Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha (2006) J. Neurochem., 96, pp. 706-718; Cata, J.P., Weng, H.R., Dougherty, P.M., The effects of thalidomide and minocycline on taxol-induced hyperalgesia in rats (2008) Brain Res., 1229, pp. 100-110; Amin, A.R., Attur, M.G., Thakker, G.D., Patel, P.D., Vyas, P.R., Patel, R.N., Patel, I.R., Abramson, S.B., A novel mechanism of action of tetracyclines: effects on nitric oxide synthases (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 14014-14019; Rifkin, B.R., Vernillo, A.T., Golub, L.M., Blocking periodontal disease progression by inhibiting tissue-destructive enzymes: a potential therapeutic role for tetracyclines and their chemically-modified analogs (1993) J. Periodontol., 64, pp. 819-827; Zhu, S., Stavrovskaya, I.G., Drozda, M., Kim, B.Y., Ona, V., Li, M., Sarang, S., Friedlander, R.M., Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice (2002) Nature, 417, pp. 74-78; Chen, M., Ona, V.O., Li, M., Ferrante, R.J., Fink, K.B., Zhu, S., Bian, J., Friedlander, R.M., Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease (2000) Nat. Med., 6, pp. 797-801; Alano, C.C., Kauppinen, T.M., Valls, A.V., Swanson, R.A., Minocycline inhibits poly(ADP-ribose) polymerase-1 at nanomolar concentrations (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 9685-9690; Kurita, A., Kado, S., Kaneda, N., Onoue, M., Hashimoto, S., Yokokura, T., Modified irinotecan hydrochloride (CPT-11) administration schedule improves induction of delayed-onset diarrhea in rats (2000) Cancer Chemother. Pharmacol., 46, pp. 211-220; Huang, T.Y., Chu, H.C., Lin, Y.L., Lin, C.K., Hsieh, T.Y., Chang, W.K., Chao, Y.C., Liao, C.L., Minocycline attenuates experimental colitis in mice by blocking expression of inducible nitric oxide synthase and matrix metalloproteinases (2009) Toxicol. Appl. Pharmacol., 237, pp. 69-82; Cross, R.K., Wilson, K.T., Nitric oxide in inflammatory bowel disease (2003) Inflamm. Bowel Dis., 9, pp. 179-189; Aguilar-Quesada, R., Munoz-Gamez, J.A., Martin-Oliva, D., Peralta-Leal, A., Quiles-Perez, R., Rodriguez-Vargas, J.M., de Almodovar, M.R., Oliver, F.J., Modulation of transcription by PARP-1: consequences in carcinogenesis and inflammation (2007) Curr. Med. Chem., 14, pp. 1179-1187; Orsucci, D., Mancuso, M., Siciliano, G., Mitochondria, oxidative stress and PARP-1 network: a new target for neuroprotective effects of tetracyclines? (2008) J. Physiol., 586, pp. 2427-2428; Di Paola, R., Mazzon, E., Xu, W., Genovese, T., Ferrraris, D., Muia, C., Crisafulli, C., Cuzzocrea, S., Treatment with PARP-1 inhibitors, GPI 15427 or GPI 16539, ameliorates intestinal damage in rat models of colitis and shock (2005) Eur. J. Pharmacol., 527, pp. 163-171; Martinez, J.A., Williams, C.S., Amann, J.M., Ellis, T.C., Moreno-Miralles, I., Washington, M.K., Gregoli, P., Hiebert, S.W., Deletion of Mtgr1 sensitizes the colonic epithelium to dextran sodium sulfate-induced colitis (2006) Gastroenterology, 131, pp. 579-588; Chu, H.C., Lin, Y.L., Sytwu, H.K., Lin, S.H., Liao, C.L., Chao, Y.C., Effects of minocycline on Fas-mediated fulminant hepatitis in mice (2005) Br. J. Pharmacol., 144, pp. 275-282; Frazier, J.L., Wang, P.P., Case, D., Tyler, B.M., Pradilla, G., Weingart, J.D., Brem, H., Local delivery of minocycline and systemic BCNU have synergistic activity in the treatment of intracranial glioma (2003) J. Neurooncol., 64, pp. 203-209; Saikali, Z., Singh, G., Doxycycline and other tetracyclines in the treatment of bone metastasis (2003) Anticancer Drugs, 14, pp. 773-778",
year = "2009",
doi = "10.1016/j.bbrc.2009.09.041",
language = "English",
volume = "389",
pages = "634--639",
journal = "Biochemical and Biophysical Research Communications",
issn = "0006-291X",
publisher = "Elsevier B.V.",
number = "4",
}