TY - JOUR
T1 - MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of myc expression in prostate cancer cells
AU - Nadiminty, N.
AU - Tummala, R.
AU - Lou, W.
AU - Zhu, Y.
AU - Zhang, J.
AU - Chen, X.
AU - DeVere White, R.W.
AU - Kung, H.-J.
AU - Evans, C.P.
AU - Gao, A.C.
N1 - 引用次數:103
Export Date: 5 March 2018
CODEN: JBCHA
通訊地址: Nadiminty, N.; Department of Urology, University of California Davis Medical Center, Research III, 4645 2nd Ave, Sacramento, CA 95817, United States; 電子郵件: [email protected]
化學物質/CAS: LIN-28 protein, human; MYC protein, human; MicroRNAs; Proto-Oncogene Proteins c-myc; RNA, Neoplasm; RNA-Binding Proteins; Receptors, Androgen; mirnlet7 microRNA, human
參考文獻: Chen, Y., Sawyers, C.L., Scher, H.I., Targeting the androgen receptor pathway in prostate cancer (2008) Curr. Opin. Pharmacol., 8, pp. 440-448; Lamont, K.R., Tindall, D.J., Androgen regulation of gene expression (2010) Adv. Cancer Res., 107, pp. 137-162; Coppola, V., De Maria, R., Bonci, D., (2010) Endocr. Relat. Cancer, 17, pp. F1-F17; Shi, X.B., Tepper, C.G., DeVere White, R.W., Cancerous miRNAs and their regulation (2008) Cell Cycle, 7, pp. 1529-1538; Gandellini, P., Folini, M., Zaffaroni, N., Towards the definition of prostate cancer-related microRNAs. Where are we now? (2009) Trends Mol. Med., 15, pp. 381-390; Calin, G.A., Sevignani, C., Dumitru, C.D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Croce, C.M., Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers (2004) Proc. Natl. Acad. Sci. U.S.A., 101, pp. 2999-3004; Ozen, M., Creighton, C.J., Ozdemir, M., Ittmann, M., Widespread deregulation of microRNA expression in human prostate cancer (2008) Oncogene, 27, pp. 1788-1793; Jiang, J., Lee, E.J., Gusev, Y., Schmittgen, T.D., Real-time expression profiling of microRNA precursors in human cancer cell lines (2005) Nucleic Acids Res., 33, pp. 5394-5403; Boyerinas, B., Park, S.M., Hau, A., Murmann, A.E., Peter, M.E., The role of let-7 in cell differentiation and cancer (2010) Endocr. Relat. Cancer, 17, pp. F19-F36; Lee, Y.S., Dutta, A., The tumor suppressor microRNA let-7 represses the HMGA2 oncogene (2007) Genes Dev., 21, pp. 1025-1030; Johnson, S.M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Slack, F.J., RAS is regulated by the let-7 microRNA family (2005) Cell, 120, pp. 635-647; Kumar, M.S., Lu, J., Mercer, K.L., Golub, T.R., Jacks, T., Impaired microRNA processing enhances cellular transformation and tumorigenesis (2007) Nat. Genet., 39, pp. 673-677; Viswanathan, S.R., Daley, G.Q., Gregory, R.I., Selective blockade of microRNA processing by Lin28 (2008) Science, 320, pp. 97-100; Viswanathan, S.R., Daley, G.Q., Lin28. A microRNA regulator with a macro role (2010) Cell, 140, pp. 445-449; Chang, T.C., Zeitels, L.R., Hwang, H.W., Chivukula, R.R., Wentzel, E.A., Dews, M., Jung, J., Mendell, J.T., Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 3384-3389; Dangi-Garimella, S., Yun, J., Eves, E.M., Newman, M., Erkeland, S.J., Hammond, S.M., Minn, A.J., Rosner, M.R., Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7 (2009) EMBO J., 28, pp. 347-358; Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Golub, T.R., MicroRNA expression profiles classify human cancers (2005) Nature, 435, pp. 834-838; Nadiminty, N., Lou, W., Lee, S.O., Lin, X., Trump, D.L., Gao, A.C., Stat3 activation of NF-κB p100 processing involves CBP/p300-mediated acetylation (2006) Proc. Natl. Acad. Sci. U.S.A., 103, pp. 7264-7269; Nadiminty, N., Dutt, S., Tepper, C., Gao, A.C., Microarray analysis reveals potential target genes of NF-κB2/p52 in LNCaP prostate cancer cells (2010) Prostate, 70, pp. 276-287; Nadiminty, N., Lou, W., Sun, M., Chen, J., Yue, J., Kung, H.J., Evans, C.P., Gao, A.C., Aberrant activation of the androgen receptor by NF-κB2/p52 in prostate cancer cells (2010) Cancer Res., 70, pp. 3309-3319; Dhir, R., Ni, Z., Lou, W., DeMiguel, F., Grandis, J.R., Gao, A.C., Stat3 activation in prostatic carcinomas (2002) Prostate, 51, pp. 241-246; Ni, Z., Lou, W., Lee, S.O., Dhir, R., DeMiguel, F., Grandis, J.R., Gao, A.C., Selective activation of members of the signal transducers and activators of transcription family in prostate carcinoma (2002) J. Urol., 167, pp. 1859-1862; Varambally, S., Yu, J., Laxman, B., Rhodes, D.R., Mehra, R., Tomlins, S.A., Shah, R.B., Chinnaiyan, A.M., Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression (2005) Cancer Cell, 8, pp. 393-406; Chandran, U.R., Ma, C., Dhir, R., Bisceglia, M., Lyons-Weiler, M., Liang, W., Michalopoulos, G., Monzon, F.A., Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process (2007) BMC Cancer, 7, p. 64; Prasad, P.D., Stanton, J.A., Assinder, S.J., Expression of the actin-associated protein transgelin (SM22) is decreased in prostate cancer (2010) Cell Tissue Res., 339, pp. 337-347; Wallace, T.A., Prueitt, R.L., Yi, M., Howe, T.M., Gillespie, J.W., Yfantis, H.G., Stephens, R.M., Ambs, S., Tumor immunobiological differences in prostate cancer between African-American and European-American men (2008) Cancer Res., 68, pp. 927-936; Yu, Y.P., Landsittel, D., Jing, L., Nelson, J., Ren, B., Liu, L., McDonald, C., Luo, J.H., Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy (2004) J. Clin. Oncology, 22, pp. 2790-2799; Vanaja, D.K., Cheville, J.C., Iturria, S.J., Young, C.Y., Transcriptional silencing of zinc finger protein 185 identified by expression profiling is associated with prostate cancer progression (2003) Cancer Res., 63, pp. 3877-3882; Lee, S.O., Lou, W., Hou, M., De Miguel, F., Gerber, L., Gao, A.C., Interleukin-6 promotes androgen-independent growth in LNCaP human prostate cancer cells (2003) Clin. Cancer Res., 9, pp. 370-376; Lee, S.O., Chun, J.Y., Nadiminty, N., Lou, W., Gao, A.C., Interleukin-6 undergoes transition from growth inhibitor associated with neuroendocrine differentiation to stimulator accompanied by androgen receptor activation during LNCaP prostate cancer cell progression (2007) Prostate, 67, pp. 764-773; Koscianska, E., Baev, V., Skreka, K., Oikonomaki, K., Rusinov, V., Tabler, M., Kalantidis, K., Prediction and preliminary validation of oncogene regulation by miRNAs (2007) BMC Mol. Biol., 8, p. 79; Iliopoulos, D., Hirsch, H.A., Struhl, K., An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation (2009) Cell, 139, pp. 693-706; Chen, C.D., Welsbie, D.S., Tran, C., Baek, S.H., Chen, R., Vessella, R., Rosenfeld, M.G., Sawyers, C.L., Molecular determinants of resistance to antiandrogen therapy (2004) Nat. Med., 10, pp. 33-39; Bonkhoff, H., Berges, R., From pathogenesis to prevention of castration-resistant prostate cancer (2010) Prostate, 70, pp. 100-112; Donovan, M.J., Khan, F.M., Fernandez, G., Mesa-Tejada, R., Sapir, M., Zubek, V.B., Powell, D., Cordon-Cardo, C., Personalized prediction of tumor response and cancer progression on prostate needle biopsy (2009) J. Urol., 182, pp. 125-132; Heinlein, C.A., Chang, C., Androgen receptor in prostate cancer (2004) Endocr. Rev., 25, pp. 276-308; Singh, P., Uzgare, A., Litvinov, I., Denmeade, S.R., Isaacs, J.T., Combinatorial androgen receptor-targeted therapy for prostate cancer (2006) Endocr. Relat. Cancer, 13, pp. 653-666; Pienta, K.J., Bradley, D., Mechanisms underlying the development of androgen-independent prostate cancer (2006) Clin. Cancer Res., 12, pp. 1665-1671; Tran, C., Ouk, S., Clegg, N.J., Chen, Y., Watson, P.A., Arora, V., Wongvipat, J., Sawyers, C.L., Development of a second-generation antiandrogen for treatment of advanced prostate cancer (2009) Science, 324, pp. 787-790
PY - 2012/1
Y1 - 2012/1
N2 - Castration-resistant prostate cancer continues to rely on androgen receptor (AR) expression. AR plays a central role in the development of prostate cancer and progression to castration resistance during and after androgen deprivation therapy. Here, we identified miR-let-7c as a key regulator of expression of AR. miR-let-7c suppresses AR expression and activity in human prostate cancer cells by targeting its transcription via c-Myc. Suppression of AR by let-7c leads to decreased cell proliferation of human prostate cancer cells. Down-regulation of Let-7c in prostate cancer specimens is inversely correlated with AR expression, whereas the expression of Lin28 (a repressor of let-7) is correlated positively with AR expression. Our study demonstrates that the miRNA let-7c plays an important role in the regulation of androgen signaling in prostate cancer by down-regulating AR expression. These results suggest that reconstitution of miR-let-7c may aid in targeting enhanced and hypersensitive AR in advanced prostate cancer. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.
AB - Castration-resistant prostate cancer continues to rely on androgen receptor (AR) expression. AR plays a central role in the development of prostate cancer and progression to castration resistance during and after androgen deprivation therapy. Here, we identified miR-let-7c as a key regulator of expression of AR. miR-let-7c suppresses AR expression and activity in human prostate cancer cells by targeting its transcription via c-Myc. Suppression of AR by let-7c leads to decreased cell proliferation of human prostate cancer cells. Down-regulation of Let-7c in prostate cancer specimens is inversely correlated with AR expression, whereas the expression of Lin28 (a repressor of let-7) is correlated positively with AR expression. Our study demonstrates that the miRNA let-7c plays an important role in the regulation of androgen signaling in prostate cancer by down-regulating AR expression. These results suggest that reconstitution of miR-let-7c may aid in targeting enhanced and hypersensitive AR in advanced prostate cancer. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.
KW - Androgen deprivation therapy
KW - Androgen receptors
KW - Down-regulation
KW - Human prostate cancer cells
KW - Key regulators
KW - MicroRNAs
KW - Prostate cancer cells
KW - Prostate cancers
KW - Cell proliferation
KW - Cells
KW - Diseases
KW - androgen receptor
KW - microRNA
KW - microRNA let 7c
KW - Myc protein
KW - unclassified drug
KW - article
KW - binding site
KW - cancer cell culture
KW - cell proliferation
KW - cell survival
KW - chromatin immunoprecipitation
KW - controlled study
KW - down regulation
KW - enzyme reconstitution
KW - gene expression regulation
KW - gene overexpression
KW - genetic transcription
KW - human
KW - human cell
KW - plasmid
KW - priority journal
KW - promoter region
KW - prostate cancer
KW - protein analysis
KW - protein binding
KW - signal transduction
KW - upregulation
KW - Cell Line, Tumor
KW - Cell Proliferation
KW - Gene Expression Regulation, Neoplastic
KW - Humans
KW - Male
KW - Prostatic Neoplasms
KW - Proto-Oncogene Proteins c-myc
KW - Receptors, Androgen
KW - RNA, Neoplasm
KW - RNA-Binding Proteins
KW - Signal Transduction
U2 - 10.1074/jbc.M111.278705
DO - 10.1074/jbc.M111.278705
M3 - Article
SN - 0021-9258
VL - 287
SP - 1527
EP - 1537
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 2
ER -