Abstract
Aims Proliferation and migration of vascular smooth muscle cells (VSMCs) can cause atherosclerosis and neointimal formation. MicroRNAs have been shown to regulate cell proliferation and phenotype transformation. We discovered abundant expression of microRNA-195 in VSMCs and conducted a series of studies to identify its function in the cardiovascular system. Methods and resultsMicroRNA-195 expression was initially found to be altered when VSMCs were treated with oxidized low-density lipoprotein (oxLDL) in a non-replicated microRNA array experiment. Using cellular studies, we found that microRNA-195 reduced VSMC proliferation, migration, and synthesis of IL-1β, IL-6, and IL-8. Using bioinformatics prediction and experimental studies, we showed that microRNA-195 could repress the expression of Cdc42, CCND1, and FGF1 genes. Using a rat model, we found that the microRNA-195 gene, introduced by adenovirus, substantially reduced neointimal formation in a balloon-injured carotid artery. In situ hybridization confirmed the presence of microRNA-195 in the treated arteries but not in control arteries. Immunohistochemistry experiments showed abundant Cdc42 in the neointima of treated arteries. ConclusionsWe showed that microRNA-195 plays a role in the cardiovascular system by inhibiting VSMC proliferation, migration, and proinflammatory biomarkers. MicroRNA-195 may have the potential to reduce neointimal formation in patients receiving stenting or angioplasty.
Original language | English |
---|---|
Pages (from-to) | 517-526 |
Number of pages | 10 |
Journal | Cardiovascular Research |
Volume | 95 |
Issue number | 4 |
DOIs | |
Publication status | Published - Sept 1 2012 |
Keywords
- Atherosclerosis
- Balloon-injured carotid artery
- Human aorta smooth muscle cell
- MicroRNA-195
- Neointimal formation
ASJC Scopus subject areas
- Cardiology and Cardiovascular Medicine
- Physiology (medical)
- Physiology