Abstract
The present study was aimed to elucidate how retinal microglia/macrophages would respond to neuronal death after intravitreal kainate injection. An increased expression of the complement receptor type 3 (CR3) and an induction of the major histocompatibility complex (MHC) class II and ED-1 antigens were mainly observed in the inner retina after kainate injection. Prominent cell death revealed by Fluoro Jade B (FJB) staining and ultrastructural examination appeared at the inner border of the inner nuclear layer (INL) at 1 day post-injection. Interestingly, some immunoreactive cells appeared at the outer segment of photoreceptor layer (OSPRL) at different time intervals. Our quantitative analysis further showed that CR3 immunoreactivity was drastically increased peaking at 7 days but subsided thereafter. MHC class II and ED-1 immunoreactivities showed a moderate but steady increase peaking at 3 days and declined thereafter. Double labeling study further revealed that retinal microglia/macrophages expressed concurrently CR3 and ED-1 antigens (OX-42 +/ED-1+) or MHC class II molecules (OX-42 +/OX-6+) and remained branched in shape at early stage of kainate challenge. By electron microscopy, microglia/macrophages with CR3 immunoreactivity displayed abundant cytoplasm containing a few vesicles and phagosomes. Other cells ultrastructurally similar to Müller cells or astrocytes could also engulf exogenous substances. In conclusion, retinal microglia/macrophages responded vigorously to kainate-induced neuronal cell death that may also trigger the recruitment of macrophages from neighboring tissues and induce the phagocytotic activity of cells other than retinal microglia/macrophages.
Original language | English |
---|---|
Pages (from-to) | 202-212 |
Number of pages | 11 |
Journal | Neuroscience Research |
Volume | 54 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 2006 |
Externally published | Yes |
Keywords
- Intravitreal injection
- Kainate
- Microglia/macrophages
- Retina
ASJC Scopus subject areas
- General Neuroscience