TY - JOUR
T1 - Metabolic profiling of metformin treatment for low-level Pb-induced nephrotoxicity in rat urine
AU - Huang, Yu Shen
AU - Wang, Shwu Huey
AU - Chen, Shih Ming
AU - Lee, Jen Ai
PY - 2018/12/1
Y1 - 2018/12/1
N2 - Chronic kidney disease is a worldwide problem, and Pb contamination is a potential risk factor. Since current biomarkers are not sensitive for the diagnosis of Pb-induced nephrotoxicity, novel biomarkers are needed. Metformin has both hypoglycaemic effects and reno-protection ability. However, its mechanism of action is unknown. We aimed to discover the early biomarkers for the diagnosis of low-level Pb-induced nephrotoxicity and understand the mechanism of reno-protection of metformin. Male Wistar rats were randomly divided into control, Pb, Pb + ML, Pb + MH and MH groups. Pb (250 ppm) was given daily via drinking water. Metformin (50 or 100 mg/kg/d) was orally administered. Urine was analysed by nuclear magnetic resonance (NMR)-based metabolomics coupled with multivariate statistical analysis, and potential biomarkers were subsequently quantified. The results showed that Pb-induced nephrotoxicity was closely correlated with the elevation of 5-aminolevulinic acid, d-lactate and guanidinoacetic acid in urine. After co-treatment with metformin, 5-aminolevulinic acid and d-lactate were decreased. This is the first demonstration that urinary 5-aminolevulinic acid, d-lactate and guanidinoacetic acid could be early biomarkers of low-level Pb-induced nephrotoxicity in rats. The reno-protection of metformin might be attributable to the reduction of d-lactate excretion.
AB - Chronic kidney disease is a worldwide problem, and Pb contamination is a potential risk factor. Since current biomarkers are not sensitive for the diagnosis of Pb-induced nephrotoxicity, novel biomarkers are needed. Metformin has both hypoglycaemic effects and reno-protection ability. However, its mechanism of action is unknown. We aimed to discover the early biomarkers for the diagnosis of low-level Pb-induced nephrotoxicity and understand the mechanism of reno-protection of metformin. Male Wistar rats were randomly divided into control, Pb, Pb + ML, Pb + MH and MH groups. Pb (250 ppm) was given daily via drinking water. Metformin (50 or 100 mg/kg/d) was orally administered. Urine was analysed by nuclear magnetic resonance (NMR)-based metabolomics coupled with multivariate statistical analysis, and potential biomarkers were subsequently quantified. The results showed that Pb-induced nephrotoxicity was closely correlated with the elevation of 5-aminolevulinic acid, d-lactate and guanidinoacetic acid in urine. After co-treatment with metformin, 5-aminolevulinic acid and d-lactate were decreased. This is the first demonstration that urinary 5-aminolevulinic acid, d-lactate and guanidinoacetic acid could be early biomarkers of low-level Pb-induced nephrotoxicity in rats. The reno-protection of metformin might be attributable to the reduction of d-lactate excretion.
UR - http://www.scopus.com/inward/record.url?scp=85054090916&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054090916&partnerID=8YFLogxK
U2 - 10.1038/s41598-018-32501-3
DO - 10.1038/s41598-018-32501-3
M3 - Article
C2 - 30275489
AN - SCOPUS:85054090916
SN - 2045-2322
VL - 8
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 14587
ER -