TY - JOUR
T1 - Mechanisms of glabridin inhibition of integrin αIIbβ3 inside-out signals and NF-κB activation in human platelets
AU - Huang, Wei Chieh
AU - Jayakumar, Thanasekaran
AU - Sheu, Joen Rong
AU - Hsia, Chih Wei
AU - Hsia, Chih Hsuan
AU - Yen, Ting Lin
AU - Chang, Chao Chien
N1 - Publisher Copyright:
© 2023, The Author(s).
PY - 2023/12
Y1 - 2023/12
N2 - Background: Platelets play a crucial role in cardiovascular diseases (CVDs) and are activated by endogenous agonists like collagen. These agonists initiate signal transduction through specific platelet receptors, resulting in platelet aggregation. Glabridin, a prenylated isoflavonoid found in licorice root, is known for its significance in metabolic abnormalities. Glabridin has been observed to inhibit collagen-induced platelet aggregation, but the precise mechanisms, specifically concerning NF-κB activation and integrin αIIbβ3 signaling, are not yet fully understood. Methods: In this study, platelet suspensions were prepared from healthy human blood donors, and the aggregation ability was observed using a lumi-aggregometer. The inhibitory mechanisms of glabridin in human platelets were evaluated through immunoblotting and confocal microscopy. The anti-thrombotic effects of glabridin were assessed by histological analysis of lung sections in acute pulmonary thromboembolism and by examining fluorescein-induced platelet plug formation in mesenteric microvessels in mice. Results: Glabridin inhibited integrin αIIbβ3 inside-out signals such as Lyn, Fyn, Syk, and integrin β3 activation and NF-κB-mediated signal events, with similar potency to classical inhibitors BAY11-7082 and Ro106-9920. Glabridin and BAY11-7082 inhibited IKK, IκBα, and p65 phosphorylation and reversed IκBα degradation, while Ro106-9920 only reduced p65 phosphorylation and reversed IκBα degradation. BAY11-7082 reduced Lyn, Fyn, Syk, integrin β3, phospholipase Cγ2 and protein kinase C activation. Glabridin reduced platelet plug formation in mesenteric microvessels and occluded vessels in thromboembolic lungs of mice. Conclusion: Our study revealed a new pathway for activating integrin αIIbβ3 inside-out signals and NF-κB, which contributes to the antiplatelet aggregation effect of glabridin. Glabridin could be a valuable prophylactic or clinical treatment option for CVDs.
AB - Background: Platelets play a crucial role in cardiovascular diseases (CVDs) and are activated by endogenous agonists like collagen. These agonists initiate signal transduction through specific platelet receptors, resulting in platelet aggregation. Glabridin, a prenylated isoflavonoid found in licorice root, is known for its significance in metabolic abnormalities. Glabridin has been observed to inhibit collagen-induced platelet aggregation, but the precise mechanisms, specifically concerning NF-κB activation and integrin αIIbβ3 signaling, are not yet fully understood. Methods: In this study, platelet suspensions were prepared from healthy human blood donors, and the aggregation ability was observed using a lumi-aggregometer. The inhibitory mechanisms of glabridin in human platelets were evaluated through immunoblotting and confocal microscopy. The anti-thrombotic effects of glabridin were assessed by histological analysis of lung sections in acute pulmonary thromboembolism and by examining fluorescein-induced platelet plug formation in mesenteric microvessels in mice. Results: Glabridin inhibited integrin αIIbβ3 inside-out signals such as Lyn, Fyn, Syk, and integrin β3 activation and NF-κB-mediated signal events, with similar potency to classical inhibitors BAY11-7082 and Ro106-9920. Glabridin and BAY11-7082 inhibited IKK, IκBα, and p65 phosphorylation and reversed IκBα degradation, while Ro106-9920 only reduced p65 phosphorylation and reversed IκBα degradation. BAY11-7082 reduced Lyn, Fyn, Syk, integrin β3, phospholipase Cγ2 and protein kinase C activation. Glabridin reduced platelet plug formation in mesenteric microvessels and occluded vessels in thromboembolic lungs of mice. Conclusion: Our study revealed a new pathway for activating integrin αIIbβ3 inside-out signals and NF-κB, which contributes to the antiplatelet aggregation effect of glabridin. Glabridin could be a valuable prophylactic or clinical treatment option for CVDs.
KW - Glabridin
KW - Human platelets
KW - NF-κB
KW - Platelet plug formation
KW - Thromboembolic lungs
KW - αβ inside-out
UR - http://www.scopus.com/inward/record.url?scp=85163101707&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85163101707&partnerID=8YFLogxK
U2 - 10.1186/s13020-023-00779-9
DO - 10.1186/s13020-023-00779-9
M3 - Article
AN - SCOPUS:85163101707
SN - 1749-8546
VL - 18
JO - Chinese Medicine (United Kingdom)
JF - Chinese Medicine (United Kingdom)
IS - 1
M1 - 71
ER -