TY - JOUR
T1 - Mechanism by which ma-xing-shi-gan-tang inhibits the entry of influenza virus
AU - Hsieh, Chung Fan
AU - Lo, Cheng Wei
AU - Liu, Chih Hao
AU - Lin, Shiming
AU - Yen, Hung Rong
AU - Lin, Tzou Yien
AU - Horng, Jim Tong
N1 - Funding Information:
This study was supported by grants from Chang Gung Memorial Hospital ( CMRPD190222 and CMRPG490072 ). Appendix A
PY - 2012/8/30
Y1 - 2012/8/30
N2 - Ethnopharmacological relevance: Ma-xing-shi-gan-tang (MXSGT, aka maxing shigan powder), a Chinese herbal decoction, has been used for the treatment of the common cold, fever, and influenza virus infections. However, the underlying mechanisms of its activity against the influenza virus are not fully understood. In this study, we examined the antiviral effects of MXSGT in influenza-virus-infected MDCK cells and their underlying mechanisms, including the damage of the viral surface ultrastructure and the consequent inhibition of viral entry. Materials and methods: The antiviral activity of nontoxic concentrations of MXSGT against influenza virus A/WSN/33 was examined by assaying (neutralization assay) its inhibition of the virus-induced cytopathic effects. The mode of MXSGT action was first examined with a time-of-addition assay of synchronized infections, followed by viral attachment and penetration assays. Viral endocytosis was evaluated with attachment and penetration assays. We also performed assays related to the inhibition of viral entry, such as neuraminidase activity, hemagglutinin activity, and phosphoinositide-3-kinase (PI3K)/AKT phosphorylation assays. The inhibition of viral replication was demonstrated by quantitative real-time PCR, immunoblotting, and immunofluorescence microscopy. The surface ultrastructure of the MXSGT-treated virus was revealed by atomic force microscopy. Results: MXSGT exhibited an EC50 of 0.83±0.41 mg/ml against influenza virus A/WSN/33 (H1N1), with broad-spectrum inhibitory activity against different strains of human influenza A viruses, including clinical oseltamivir-resistant isolates and an H1N1pdm strain. The synthesis of both viral RNA and protein was profoundly inhibited when the cells were treated with MXSGT. The time-of-addition assay demonstrated that MXSGT blocks the virus entry phase. This was confirmed with attachment and penetration assays, in which MXSGT showed similar inhibitory potencies (IC50 of 0.58±0.07 and 0.47±0.08 mg/ml). High-resolution images and quantitative measurements made with atomic force microscopy confirmed that the viral surface structure was disrupted by MXSGT. We also established that viral entry, regulated by the PI3K/AKT signaling pathway, was abolished by MXSGT. Conclusions: Our results give scientific support to the use of MXSGT in the treatment of influenza virus infections. MXSGT has potential utility in the management of seasonal pandemics of influenza virus infections, like other clinically available drugs.
AB - Ethnopharmacological relevance: Ma-xing-shi-gan-tang (MXSGT, aka maxing shigan powder), a Chinese herbal decoction, has been used for the treatment of the common cold, fever, and influenza virus infections. However, the underlying mechanisms of its activity against the influenza virus are not fully understood. In this study, we examined the antiviral effects of MXSGT in influenza-virus-infected MDCK cells and their underlying mechanisms, including the damage of the viral surface ultrastructure and the consequent inhibition of viral entry. Materials and methods: The antiviral activity of nontoxic concentrations of MXSGT against influenza virus A/WSN/33 was examined by assaying (neutralization assay) its inhibition of the virus-induced cytopathic effects. The mode of MXSGT action was first examined with a time-of-addition assay of synchronized infections, followed by viral attachment and penetration assays. Viral endocytosis was evaluated with attachment and penetration assays. We also performed assays related to the inhibition of viral entry, such as neuraminidase activity, hemagglutinin activity, and phosphoinositide-3-kinase (PI3K)/AKT phosphorylation assays. The inhibition of viral replication was demonstrated by quantitative real-time PCR, immunoblotting, and immunofluorescence microscopy. The surface ultrastructure of the MXSGT-treated virus was revealed by atomic force microscopy. Results: MXSGT exhibited an EC50 of 0.83±0.41 mg/ml against influenza virus A/WSN/33 (H1N1), with broad-spectrum inhibitory activity against different strains of human influenza A viruses, including clinical oseltamivir-resistant isolates and an H1N1pdm strain. The synthesis of both viral RNA and protein was profoundly inhibited when the cells were treated with MXSGT. The time-of-addition assay demonstrated that MXSGT blocks the virus entry phase. This was confirmed with attachment and penetration assays, in which MXSGT showed similar inhibitory potencies (IC50 of 0.58±0.07 and 0.47±0.08 mg/ml). High-resolution images and quantitative measurements made with atomic force microscopy confirmed that the viral surface structure was disrupted by MXSGT. We also established that viral entry, regulated by the PI3K/AKT signaling pathway, was abolished by MXSGT. Conclusions: Our results give scientific support to the use of MXSGT in the treatment of influenza virus infections. MXSGT has potential utility in the management of seasonal pandemics of influenza virus infections, like other clinically available drugs.
KW - Atomic force microscopy
KW - Attachment assay
KW - Cytopathic effect
KW - Influenza virus
KW - Ma-hsing-kan-shih-tang
KW - MXSGT
KW - Penetration assay
UR - http://www.scopus.com/inward/record.url?scp=84864679619&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84864679619&partnerID=8YFLogxK
U2 - 10.1016/j.jep.2012.05.061
DO - 10.1016/j.jep.2012.05.061
M3 - Article
C2 - 22710290
AN - SCOPUS:84864679619
SN - 0378-8741
VL - 143
SP - 57
EP - 67
JO - Journal of Ethnopharmacology
JF - Journal of Ethnopharmacology
IS - 1
ER -