Abstract
In this study, an optimal selective laser melting (SLM) process for manufacturing dense NiTi alloy with pseudoelasticity and shape-memory capability was proposed. The microstructure, phase-transformation temperature, shape memory capability, and pseudoelasticity were investigated by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and bending and tensile tests. NiTi powder with a particle size > 45 µm was selected for the subsequent SLM process, because it exhibited a Ni/Ti ratio of ~1 and a lower oxygen content than powders with smaller particle sizes. A thin-walled disk (0.48 mm thick) and cuboid samples (5 mm thick) were prepared for investigating the variation in the homogeneity of the microstructure. The thin-walled SLM-NiTi sample exhibited a marginally inhomogeneous microstructure between layers, and defects existed in the previously formed side. The cuboid SLM-NiTi sample was fabricated without undesirable secondary phases, and it exhibited a 100% shape-recovery rate under 2% bending strain and completely pseudoelastic under 3% strain. Also, the SLM-NiTi exhibited lower phase-transformation temperatures and a broader phase-transformation range than the original NiTi. The phase-transformation range can be reduced by annealing.
Original language | English |
---|---|
Article number | 342 |
Journal | Metals |
Volume | 8 |
Issue number | 5 |
DOIs | |
Publication status | Published - May 11 2018 |
Keywords
- NiTi
- Pseudoelasticity
- Selective laser melting
- Shape memory
ASJC Scopus subject areas
- General Materials Science