Abstract
Original language | English |
---|---|
Journal | BMC Genomics |
Volume | 15 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2014 |
Externally published | Yes |
Keywords
- Comparative genomics
- Coregulators
- Functional annotation
- Transcription factor annotation
- transcription factor
- Arabidopsis
- Article
- C4 plant
- comparative genomic hybridization
- controlled study
- familia
- foxtail millet
- gene expression regulation
- gene function
- genetic database
- genome analysis
- maize
- microarray analysis
- molecular evolution
- nonhuman
- photosynthesis
- protein expression
- pseudogene
- rice
- RNA sequence
- sequence homology
- tissue growth
- tissue specificity
- transcriptomics
- transposon
- Zea mays
Fingerprint
Dive into the research topics of 'Maize and millet transcription factors annotated using comparative genomic and transcriptomic data'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: BMC Genomics, Vol. 15, No. 1, 2014.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Maize and millet transcription factors annotated using comparative genomic and transcriptomic data
AU - Lin, Jinn-Jy
AU - Yu, Chun-Ping
AU - Chang, Yao-Ming
AU - Chen, Chun-Chang
AU - Li, Wen-Hsiung
N1 - 被引用次數:3 Export Date: 21 March 2016 CODEN: BGMEE 通訊地址: Li, W.-H.; Institute of Molecular and Cellular Biology, National Tsing Hua UniversityTaiwan 參考文獻: Ohme-Takagi, M., Shinshi, H., Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element (1995) Plant Cell, 7, pp. 173-182. , 160773, 7756828; Nole-Wilson, S., Krizek, B.A., DNA binding properties of the Arabidopsis floral development protein AINTEGUMENTA (2000) Nucleic Acids Res, 28, pp. 4076-4082. , 113152, 11058102; Ulmasov, T., Hagen, G., Guilfoyle, T.J., ARF1, a transcription factor that binds to auxin response elements (1997) Science, 276, pp. 1865-1868. , 9188533; Guilfoyle, T.J., Ulmasov, T., Hagen, G., The ARF family of transcription factors and their role in plant hormone-responsive transcription (1998) Cell Mol Life Sci, 54, pp. 619-627. , 9711229; Mannervik, M., Nibu, Y., Zhang, H., Levine, M., Transcriptional coregulators in development (1999) Science, 284, pp. 606-609. , 10213677; Tiwari, S.B., Wang, X.J., Hagen, G., Guilfoyle, T.J., AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin (2001) Plant Cell, 13, pp. 2809-2822. , 139490, 11752389; Hamann, T., Benkova, E., Baurle, I., Kientz, M., Jurgens, G., The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning (2002) Genes Dev, 16, pp. 1610-1615. , 186366, 12101120; Guo, A., He, K., Liu, D., Bai, S., Gu, X., Wei, L., Luo, J., DATF: a database of Arabidopsis transcription factors (2005) Bioinformatics, 21, pp. 2568-2569. , 15731212; Iida, K., Seki, M., Sakurai, T., Satou, M., Akiyama, K., Toyoda, T., Konagaya, A., Shinozaki, K., RARTF: database and tools for complete sets of Arabidopsis transcription factors (2005) DNA Res, 12, pp. 247-256. , 16769687; Mitsuda, N., Ohme-Takagi, M., Functional analysis of transcription factors in Arabidopsis (2009) Plant Cell Physiol, 50, pp. 1232-1248. , 2709548, 19478073; Perez-Rodriguez, P., Riano-Pachon, D.M., Correa, L.G., Rensing, S.A., Kersten, B., Mueller-Roeber, B., PlnTFDB: updated content and new features of the plant transcription factor database (2010) Nucleic Acids Res, 38, pp. D822-D827. , 2808933, 19858103; Yilmaz, A., Mejia-Guerra, M.K., Kurz, K., Liang, X., Welch, L., Grotewold, E., AGRIS: the Arabidopsis gene regulatory information server, an update (2011) Nucleic Acids Res, 39, pp. D1118-D1122. , 3013708, 21059685; Yilmaz, A., Nishiyama, M.Y., Fuentes, B.G., Souza, G.M., Janies, D., Gray, J., Grotewold, E., GRASSIUS: a platform for comparative regulatory genomics across the grasses (2009) Plant Physiol, 149, pp. 171-180. , 2613736, 18987217; Ling, Y., Du, Z., Zhang, Z., Su, Z., ProFITS of maize: a database of protein families involved in the transduction of signalling in the maize genome (2010) BMC Genomics, 11, p. 580. , 3091727, 20955618; Dai, X., Sinharoy, S., Udvardi, M., Zhao, P.X., PlantTFcat: an online plant transcription factor and transcriptional regulator categorization and analysis tool (2013) BMC Bioinformatics, 14, p. 321. , 24219505; Mochida, K., Yoshida, T., Sakurai, T., Yamaguchi-Shinozaki, K., Shinozaki, K., Tran, L.S., TreeTFDB: an integrative database of the transcription factors from six economically important tree crops for functional predictions and comparative and functional genomics (2013) DNA Res, 20, pp. 151-162. , 3628445, 23284086; Jin, J., Zhang, H., Kong, L., Gao, G., Luo, J., PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors (2014) Nucleic Acids Res, 42, pp. D1182-D1187. , 3965000, 24174544; Gore, M.A., Chia, J.M., Elshire, R.J., Sun, Q., Ersoz, E.S., Hurwitz, B.L., Peiffer, J.A., Buckler, E.S., A first-generation haplotype map of maize (2009) Science, 326, pp. 1115-1117. , 19965431; Schnable, P.S., Ware, D., Fulton, R.S., Stein, J.C., Wei, F., Pasternak, S., Liang, C., Gillam, B., The B73 maize genome: complexity, diversity, and dynamics (2009) Science, 326, pp. 1112-1115. , 19965430; Liu, W.Y., Chang, Y.M., Chen, S.C., Lu, C.H., Wu, Y.H., Lu, M.Y., Chen, D.R., Li, W.H., Anatomical and transcriptional dynamics of maize embryonic leaves during seed germination (2013) Proc Natl Acad Sci U S A, 110, pp. 3979-3984. , 3593892, 23431200; Bennetzen, J.L., Schmutz, J., Wang, H., Percifield, R., Hawkins, J., Pontaroli, A.C., Estep, M., Brutnell, T.P., Reference genome sequence of the model plant Setaria (2012) Nat Biotechnol, 30, pp. 555-561. , 22580951; Zhang, G., Liu, X., Quan, Z., Cheng, S., Xu, X., Pan, S., Xie, M., Xiang, H., Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential (2012) Nat Biotechnol, 30, pp. 549-554. , 22580950; Zhang, H.M., Chen, H., Liu, W., Liu, H., Gong, J., Wang, H., Guo, A.Y., AnimalTFDB: a comprehensive animal transcription factor database (2012) Nucleic Acids Res, 40, pp. D144-D149. , 3245155, 22080564; Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Sherlock, G., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium (2000) Nat Genet, 25, pp. 25-29. , 3037419, 10802651; Gendron, J.M., Pruneda-Paz, J.L., Doherty, C.J., Gross, A.M., Kang, S.E., Kay, S.A., Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor (2012) Proc Natl Acad Sci U S A, 109, pp. 3167-3172. , 3286946, 22315425; Franco-Zorrilla, J.M., Lopez-Vidriero, I., Carrasco, J.L., Godoy, M., Vera, P., Solano, R., DNA-binding specificities of plant transcription factors and their potential to define target genes (2014) Proc Natl Acad Sci U S A, 111, pp. 2367-2372. , 3926073, 24477691; Kersey, P.J., Allen, J.E., Christensen, M., Davis, P., Falin, L.J., Grabmueller, C., Hughes, D.S., Howe, K.L., Ensembl Genomes 2013: scaling up access to genome-wide data (2014) Nucleic Acids Res, 42, pp. D546-D552. , 3965094, 24163254; Wang, X., Elling, A.A., Li, X., Li, N., Peng, Z., He, G., Sun, H., Deng, X.W., Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize (2009) Plant Cell, 21, pp. 1053-1069. , 2685623, 19376930; Li, P., Ponnala, L., Gandotra, N., Wang, L., Si, Y., Tausta, S.L., Kebrom, T.H., Brutnell, T.P., The developmental dynamics of the maize leaf transcriptome (2010) Nat Genet, 42, pp. 1060-1067. , 21037569; Davidson, R.M., Hansey, C.N., Gowda, M., Childs, K.L., Lin, H.N., Vaillancourt, B., Sekhon, R.S., Buell, C.R., Utility of RNA sequencing for analysis of maize reproductive transcriptomes (2011) Plant Genome-Us, 4, pp. 191-203; Sekhon, R.S., Lin, H., Childs, K.L., Hansey, C.N., Buell, C.R., de Leon, N., Kaeppler, S.M., Genome-wide atlas of transcription during maize development (2011) Plant J, 66, pp. 553-563. , 21299659; Waters, A.J., Makarevitch, I., Eichten, S.R., Swanson-Wagner, R.A., Yeh, C.T., Xu, W., Schnable, P.S., Springer, N.M., Parent-of-origin effects on gene expression and DNA methylation in the maize endosperm (2011) Plant Cell, 23, pp. 4221-4233. , 3269861, 22198147; Bolduc, N., Yilmaz, A., Mejia-Guerra, M.K., Morohashi, K., O'Connor, D., Grotewold, E., Hake, S., Unraveling the KNOTTED1 regulatory network in maize meristems (2012) Genes Dev, 26, pp. 1685-1690. , 3418586, 22855831; Chang, Y.M., Liu, W.Y., Shih, A.C., Shen, M.N., Lu, C.H., Lu, M.Y., Yang, H.W., Ku, M.S., Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis (2012) Plant Physiol, 160, pp. 165-177. , 3440195, 22829318; Chettoor, A.M., Givan, S.A., Cole, R.A., Coker, C.T., Unger-Wallace, E., Vejlupkova, Z., Vollbrecht, E., Evans, M., Discovery of novel transcripts and gametophytic functions via RNA-seq analysis of maize gametophytic transcriptomes (2014) Genome Biol, 15, p. 414. , 25084966; Birnbaum, K., Shasha, D.E., Wang, J.Y., Jung, J.W., Lambert, G.M., Galbraith, D.W., Benfey, P.N., A gene expression map of the Arabidopsis root (2003) Science, 302, pp. 1956-1960. , 14671301; Smaczniak, C., Immink, R.G., Angenent, G.C., Kaufmann, K., Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies (2012) Development, 139, pp. 3081-3098. , 22872082; Nambara, E., Hayama, R., Tsuchiya, Y., Nishimura, M., Kawaide, H., Kamiya, Y., Naito, S., The role of ABI3 and FUS3 loci in Arabidopsis thaliana on phase transition from late embryo development to germination (2000) Dev Biol, 220, pp. 412-423. , 10753527; Stone, S.L., Kwong, L.W., Yee, K.M., Pelletier, J., Lepiniec, L., Fischer, R.L., Goldberg, R.B., Harada, J.J., LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development (2001) Proc Natl Acad Sci U S A, 98, pp. 11806-11811. , 58812, 11573014; Suzuki, M., Wang, H.H.Y., McCarty, D.R., Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes (2007) Plant Physiol, 143, pp. 902-911. , 1803726, 17158584; Tsukagoshi, H., Morikami, A., Nakamura, K., Two B3 domain transcriptional repressors prevent sugar-inducible expression of seed maturation genes in Arabidopsis seedlings (2007) Proc Natl Acad Sci U S A, 104, pp. 2543-2547. , 1785360, 17267611; Tsaballa, A., Pasentsis, K., Darzentas, N., Tsaftaris, A.S., Multiple evidence for the role of an Ovate-like gene in determining fruit shape in pepper (2011) BMC Plant Biol, 11, pp. 46-46. , 3069956, 21401913; Juarez, M.T., Twigg, R.W., Timmermans, M.C., Specification of adaxial cell fate during maize leaf development (2004) Development, 131, pp. 4533-4544. , 15342478; Siegfried, K.R., Eshed, Y., Baum, S.F., Otsuga, D., Drews, G.N., Bowman, J.L., Members of the YABBY gene family specify abaxial cell fate in Arabidopsis (1999) Development, 126, pp. 4117-4128; Kerstetter, R.A., Bollman, K., Taylor, R.A., Bomblies, K., Poethig, R.S., KANADI regulates organ polarity in Arabidopsis (2001) Nature, 411, pp. 706-709. , 11395775; Kleine, T., Arabidopsis thaliana mTERF proteins: evolution and functional classification (2012) Front Plant Sci, 3, p. 233. , 3471360, 23087700; Dolfini, D., Gatta, R., Mantovani, R., NF-Y and the transcriptional activation of CCAAT promoters (2012) Crit Rev Biochem Mol Biol, 47, pp. 29-49. , 22050321; Jiao, Y., Tausta, S.L., Gandotra, N., Sun, N., Liu, T., Clay, N.K., Ceserani, T., Nelson, T., A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies (2009) Nat Genet, 41, pp. 258-263. , 19122662; Brown, P.J., Upadyayula, N., Mahone, G.S., Tian, F., Bradbury, P.J., Myles, S., Holland, J.B., Rocheford, T.R., Distinct genetic architectures for male and female inflorescence traits of maize (2011) PLoS Genet, 7, p. e1002383. , 3219606, 22125498; Hu, R., Qi, G., Kong, Y., Kong, D., Gao, Q., Zhou, G., Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa (2010) BMC Plant Biol, 10, p. 145. , 3017804, 20630103; Yamaguchi, M., Kubo, M., Fukuda, H., Demura, T., Vascular-related NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots (2008) Plant J, 55, pp. 652-664. , 18445131; He, X.J., Mu, R.L., Cao, W.H., Zhang, Z.G., Zhang, J.S., Chen, S.Y., AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development (2005) Plant J, 44, pp. 903-916. , 16359384; Kubo, M., Udagawa, M., Nishikubo, N., Horiguchi, G., Yamaguchi, M., Ito, J., Mimura, T., Demura, T., Transcription switches for protoxylem and metaxylem vessel formation (2005) Genes Dev, 19, pp. 1855-1860. , 1186185, 16103214; Guo, H.S., Xie, Q., Fei, J.F., Chua, N.H., MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development (2005) Plant Cell, 17, pp. 1376-1386. , 1091761, 15829603; Waters, M.T., Wang, P., Korkaric, M., Capper, R.G., Saunders, N.J., Langdale, J.A., GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis (2009) Plant Cell, 21, pp. 1109-1128. , 2685620, 19376934; Hall, L.N., Rossini, L., Cribb, L., Langdale, J.A., GOLDEN 2: a novel transcriptional regulator of cellular differentiation in the maize leaf (1998) Plant Cell, 10, pp. 925-936. , 144032, 9634581; Wuest, S.E., O'Maoileidigh, D.S., Rae, L., Kwasniewska, K., Raganelli, A., Hanczaryk, K., Lohan, A.J., Wellmer, F., Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA (2012) Proc Natl Acad Sci U S A, 109, pp. 13452-13457. , 3421202, 22847437; Colangelo, E.P., Guerinot, M.L., The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response (2004) Plant Cell, 16, pp. 3400-3412. , 535881, 15539473; John, C.R., Smith-Unna, R.D., Woodfield, H., Covshoff, S., Hibberd, J.M., Evolutionary convergence of cell-specific gene expression in independent lineages of C4 grasses (2014) Plant Physiol, 165, pp. 62-75. , 4012605, 24676859; Tausta, S.L., Li, P., Si, Y., Gandotra, N., Liu, P., Sun, Q., Brutnell, T.P., Nelson, T., Developmental dynamics of Kranz cell transcriptional specificity in maize leaf reveals early onset of C4-related processes (2014) J Exp Bot, 65, pp. 3543-3555. , 4085964, 24790109; Wang, P., Kelly, S., Fouracre, J.P., Langdale, J.A., Genome-wide transcript analysis of early maize leaf development reveals gene cohorts associated with the differentiation of C4 Kranz anatomy (2013) Plant J, 75, pp. 656-670. , 23647263; Zhao, Y., Cai, M., Zhang, X., Li, Y., Zhang, J., Zhao, H., Kong, F., Qiu, F., Genome-wide identification, evolution and expression analysis of mTERF gene family in maize (2014) PLoS One, 9, p. e94126. , 3981765, 24718683; Mizuno, T., Nakamichi, N., Pseudo-Response Regulators (PRRs) or True Oscillator Components (TOCs) (2005) Plant Cell Physiol, 46, pp. 677-685. , 15767264; Satbhai, S.B., Yamashino, T., Okada, R., Nomoto, Y., Mizuno, T., Tezuka, Y., Itoh, T., Aoki, S., Pseudo-response regulator (PRR) homologues of the moss Physcomitrella patens: insights into the evolution of the PRR family in land plants (2011) DNA Res, 18, pp. 39-52. , 3041508, 21186242; Takata, N., Saito, S., Saito, C.T., Uemura, M., Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of pseudo-response regulators (2010) BMC Evol Biol, 10, p. 126. , 2887406, 20433765; Babiychuk, E., Vandepoele, K., Wissing, J., Garcia-Diaz, M., De Rycke, R., Akbari, H., Joubes, J., Kushnir, S., Plastid gene expression and plant development require a plastidic protein of the mitochondrial transcription termination factor family (2011) Proc Natl Acad Sci U S A, 108, pp. 6674-6679. , 3081001, 21464319; Nan, X., Ng, H.H., Johnson, C.A., Laherty, C.D., Turner, B.M., Eisenman, R.N., Bird, A., Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex (1998) Nature, 393, pp. 386-389. , 9620804; Wade, P.A., Methyl CpG-binding proteins and transcriptional repression (2001) Bioessays, 23, pp. 1131-1137. , 11746232; Springer, N.M., Kaeppler, S.M., Evolutionary divergence of monocot and dicot methyl-CpG-binding domain proteins (2005) Plant Physiol, 138, pp. 92-104. , 1104165, 15888682; He, S., Tan, G., Liu, Q., Huang, K., Ren, J., Zhang, X., Yu, X., An, C., The LSD1-interacting protein GILP is a LITAF domain protein that negatively regulates hypersensitive cell death in Arabidopsis (2011) PLoS One, 6, p. e18750. , 3079718, 21526181; Street, V.A., Bennett, C.L., Goldy, J.D., Shirk, A.J., Kleopa, K.A., Tempel, B.L., Lipe, H.P., Chance, P.F., Mutation of a putative protein degradation gene LITAF/SIMPLE in Charcot-Marie-Tooth disease 1C (2003) Neurology, 60, pp. 22-26. , 12525712; Moriwaki, Y., Begum, N.A., Kobayashi, M., Matsumoto, M., Toyoshima, K., Seya, T., Mycobacterium bovis Bacillus Calmette-Guerin and its cell wall complex induce a novel lysosomal membrane protein, SIMPLE, that bridges the missing link between lipopolysaccharide and p53-inducible gene, LITAF(PIG7), and estrogen-inducible gene, EET-1 (2001) J Biol Chem, 276, pp. 23065-23076. , 11274176; Schreiber, F., Patricio, M., Muffato, M., Pignatelli, M., Bateman, A., TreeFam v9: a new website, more species and orthology-on-the-fly (2014) Nucleic Acids Res, 42, pp. D922-D925. , 3965059, 24194607; Markljung, E., Jiang, L., Jaffe, J.D., Mikkelsen, T.S., Wallerman, O., Larhammar, M., Zhang, X., Andersson, L., ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth (2009) PLoS Biol, 7, p. e1000256. , 2780926, 20016685; Hayward, A., Ghazal, A., Andersson, G., Andersson, L., Jern, P., ZBED evolution: repeated utilization of DNA transposons as regulators of diverse host functions (2013) PLoS One, 8, p. e59940. , 3606216, 23533661; Jones, P.G., VanBogelen, R.A., Neidhardt, F.C., Induction of proteins in response to low temperature in Escherichia coli (1987) J Bacteriol, 169, pp. 2092-2095. , 212099, 3553157; Karlson, D., Imai, R., Conservation of the cold shock domain protein family in plants (2003) Plant Physiol, 131, pp. 12-15. , 1540277, 12529510; Stros, M., Launholt, D., Grasser, K.D., The HMG-box: a versatile protein domain occurring in a wide variety of DNA-binding proteins (2007) Cell Mol Life Sci, 64, pp. 2590-2606. , 17599239; Reeves, R., Structure and function of the HMGI(Y) family of architectural transcription factors (2000) Environ Health Perspect, 108, pp. 803-809; Webster, C.I., Packman, L.C., Pwee, K.H., Gray, J.C., High mobility group proteins HMG-1 and HMG-I/Y bind to a positive regulatory region of the pea plastocyanin gene promoter (1997) Plant J, 11, pp. 703-715. , 9161031; Zhao, J., Favero, D.S., Peng, H., Neff, M.M., Arabidopsis thaliana AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain (2013) Proc Natl Acad Sci U S A, 110, pp. E4688-E4697. , 3845178, 24218605; Wu, L., Wu, H., Ma, L., Sangiorgi, F., Wu, N., Bell, J.R., Lyons, G.E., Maxson, R., Miz1, a novel zinc finger transcription factor that interacts with Msx2 and enhances its affinity for DNA (1997) Mech Dev, 65, pp. 3-17. , 9256341; Hunter, S., Jones, P., Mitchell, A., Apweiler, R., Attwood, T.K., Bateman, A., Bernard, T., McDowall, J., InterPro in 2011: new developments in the family and domain prediction database (2012) Nucleic Acids Res, 40, pp. D306-D312. , 3245097, 22096229; Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Heger, A., Punta, M., Pfam: the protein families database (2014) Nucleic Acids Res, 42, pp. D222-D230. , 3965110, 24288371; Zhang, H., Jin, J., Tang, L., Zhao, Y., Gu, X., Gao, G., Luo, J., PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database (2011) Nucleic Acids Res, 39, pp. D1114-D1117. , 3013715, 21097470; Bullard, J.H., Purdom, E., Hansen, K.D., Dudoit, S., Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments (2010) BMC Bioinformatics, 11, p. 94. , 2838869, 20167110; Dash, S., Van Hemert, J., Hong, L., Wise, R.P., Dickerson, J.A., PLEXdb: gene expression resources for plants and plant pathogens (2012) Nucleic Acids Res, 40, pp. D1194-D1201. , 3245067, 22084198; Zimmer, A.D., Lang, D., Buchta, K., Rombauts, S., Nishiyama, T., Hasebe, M., Van de Peer, Y., Reski, R., Reannotation and extended community resources for the genome of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions (2013) BMC Genomics, 14, p. 498. , 3729371, 23879659; Kinsella, R.J., Kahari, A., Haider, S., Zamora, J., Proctor, G., Spudich, G., Almeida-King, J., Flicek, P., Ensembl BioMarts: a hub for data retrieval across taxonomic space (2011) Database (Oxford), , 2011, bar030, 3170168, 21785142; Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res, 32, pp. 1792-1797. , 390337, 15034147; Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol Biol Evol, 28, pp. 2731-2739. , 3203626, 21546353
PY - 2014
Y1 - 2014
N2 - Background: Transcription factors (TFs) contain DNA-binding domains (DBDs) and regulate gene expression by binding to specific DNA sequences. In addition, there are proteins, called transcription coregulators (TCs), which lack DBDs but can alter gene expression through interaction with TFs or RNA Polymerase II. Therefore, it is interesting to identify and classify the TFs and TCs in a genome. In this study, maize (Zea mays) and foxtail millet (Setaria italica), two important species for the study of C4 photosynthesis and kranz anatomy, were selected.Result: We conducted a comprehensive genome-wide annotation of TFs and TCs in maize B73 and in two strains of foxtail millet, Zhang gu and Yugu1, and classified them into families. To gain additional support for our predictions, we searched for their homologous genes in Arabidopsis or rice and studied their gene expression level using RNA-seq and microarray data. We identified many new TF and TC families in these two species, and described some evolutionary and functional aspects of the 9 new maize TF families. Moreover, we detected many pseudogenes and transposable elements in current databases. In addition, we examined tissue expression preferences of TF and TC families and identified tissue/condition-specific TFs and TCs in maize and millet. Finally, we identified potential C4-related TF and TC genes in maize and millet. Conclusions: Our results significantly expand current TF and TC annotations in maize and millet. We provided supporting evidence for our annotation from genomic and gene expression data and identified TF and TC genes with tissue preference in expression. Our study may facilitate the study of regulation of gene expression, tissue morphogenesis, and C4 photosynthesis in maize and millet. The data we generated in this study are available at http://sites.google.com/site/jjlmmtf. © 2014 Lin et al.; licensee BioMed Central Ltd.
AB - Background: Transcription factors (TFs) contain DNA-binding domains (DBDs) and regulate gene expression by binding to specific DNA sequences. In addition, there are proteins, called transcription coregulators (TCs), which lack DBDs but can alter gene expression through interaction with TFs or RNA Polymerase II. Therefore, it is interesting to identify and classify the TFs and TCs in a genome. In this study, maize (Zea mays) and foxtail millet (Setaria italica), two important species for the study of C4 photosynthesis and kranz anatomy, were selected.Result: We conducted a comprehensive genome-wide annotation of TFs and TCs in maize B73 and in two strains of foxtail millet, Zhang gu and Yugu1, and classified them into families. To gain additional support for our predictions, we searched for their homologous genes in Arabidopsis or rice and studied their gene expression level using RNA-seq and microarray data. We identified many new TF and TC families in these two species, and described some evolutionary and functional aspects of the 9 new maize TF families. Moreover, we detected many pseudogenes and transposable elements in current databases. In addition, we examined tissue expression preferences of TF and TC families and identified tissue/condition-specific TFs and TCs in maize and millet. Finally, we identified potential C4-related TF and TC genes in maize and millet. Conclusions: Our results significantly expand current TF and TC annotations in maize and millet. We provided supporting evidence for our annotation from genomic and gene expression data and identified TF and TC genes with tissue preference in expression. Our study may facilitate the study of regulation of gene expression, tissue morphogenesis, and C4 photosynthesis in maize and millet. The data we generated in this study are available at http://sites.google.com/site/jjlmmtf. © 2014 Lin et al.; licensee BioMed Central Ltd.
KW - Comparative genomics
KW - Coregulators
KW - Functional annotation
KW - Transcription factor annotation
KW - transcription factor
KW - Arabidopsis
KW - Article
KW - C4 plant
KW - comparative genomic hybridization
KW - controlled study
KW - familia
KW - foxtail millet
KW - gene expression regulation
KW - gene function
KW - genetic database
KW - genome analysis
KW - maize
KW - microarray analysis
KW - molecular evolution
KW - nonhuman
KW - photosynthesis
KW - protein expression
KW - pseudogene
KW - rice
KW - RNA sequence
KW - sequence homology
KW - tissue growth
KW - tissue specificity
KW - transcriptomics
KW - transposon
KW - Zea mays
U2 - 10.1186/1471-2164-15-818
DO - 10.1186/1471-2164-15-818
M3 - Article
SN - 1471-2164
VL - 15
JO - BMC Genomics
JF - BMC Genomics
IS - 1
ER -