TY - JOUR
T1 - Machine Learning Approaches for Predicting Psoriatic Arthritis Risk Using Electronic Medical Records
T2 - Population-Based Study
AU - Tsung-Ju Lee, Leon
AU - Yang, Hsuan Chia
AU - Nguyen, Phung Anh
AU - Muhtar, Muhammad Solihuddin
AU - Jack Li, Yu Chuan
N1 - Funding Information:
We acknowledge the statistical support of the Research Center of Biostatistics, Taipei Medical University (TMU), Taiwan. The authors also acknowledge the academic and science graphic illustration service provided by TMU Office of Research and Development. This manuscript was edited by Wallace Academic Editing. This research was supported by grant 109TMUH-NE-08 from the TMU Hospital in Taiwan and NSTC 111-2622-8-038-006-IE from the National Science and Technology Council, Taiwan.
Publisher Copyright:
© 2023 Journal of Medical Internet Research. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Background: Psoriasis (PsO) is a chronic, systemic, immune-mediated disease with multiorgan involvement. Psoriatic arthritis (PsA) is an inflammatory arthritis that is present in 6%-42% of patients with PsO. Approximately 15% of patients with PsO have undiagnosed PsA. Predicting patients with a risk of PsA is crucial for providing them with early examination and treatment that can prevent irreversible disease progression and function loss. Objective: The aim of this study was to develop and validate a prediction model for PsA based on chronological large-scale and multidimensional electronic medical records using a machine learning algorithm. Methods: This case-control study used Taiwan's National Health Insurance Research Database from January 1, 1999, to December 31, 2013. The original data set was split into training and holdout data sets in an 80:20 ratio. A convolutional neural network was used to develop a prediction model. This model used 2.5-year diagnostic and medical records (inpatient and outpatient) with temporal-sequential information to predict the risk of PsA for a given patient within the next 6 months. The model was developed and cross-validated using the training data and was tested using the holdout data. An occlusion sensitivity analysis was performed to identify the important features of the model. Results: The prediction model included a total of 443 patients with PsA with earlier diagnosis of PsO and 1772 patients with PsO without PsA for the control group. The 6-month PsA risk prediction model that uses sequential diagnostic and drug prescription information as a temporal phenomic map yielded an area under the receiver operating characteristic curve of 0.70 (95% CI 0.559-0.833), a mean sensitivity of 0.80 (SD 0.11), a mean specificity of 0.60 (SD 0.04), and a mean negative predictive value of 0.93 (SD 0.04). Conclusions: The findings of this study suggest that the risk prediction model can identify patients with PsO at a high risk of PsA. This model may help health care professionals to prioritize treatment for target high-risk populations and prevent irreversible disease progression and functional loss.
AB - Background: Psoriasis (PsO) is a chronic, systemic, immune-mediated disease with multiorgan involvement. Psoriatic arthritis (PsA) is an inflammatory arthritis that is present in 6%-42% of patients with PsO. Approximately 15% of patients with PsO have undiagnosed PsA. Predicting patients with a risk of PsA is crucial for providing them with early examination and treatment that can prevent irreversible disease progression and function loss. Objective: The aim of this study was to develop and validate a prediction model for PsA based on chronological large-scale and multidimensional electronic medical records using a machine learning algorithm. Methods: This case-control study used Taiwan's National Health Insurance Research Database from January 1, 1999, to December 31, 2013. The original data set was split into training and holdout data sets in an 80:20 ratio. A convolutional neural network was used to develop a prediction model. This model used 2.5-year diagnostic and medical records (inpatient and outpatient) with temporal-sequential information to predict the risk of PsA for a given patient within the next 6 months. The model was developed and cross-validated using the training data and was tested using the holdout data. An occlusion sensitivity analysis was performed to identify the important features of the model. Results: The prediction model included a total of 443 patients with PsA with earlier diagnosis of PsO and 1772 patients with PsO without PsA for the control group. The 6-month PsA risk prediction model that uses sequential diagnostic and drug prescription information as a temporal phenomic map yielded an area under the receiver operating characteristic curve of 0.70 (95% CI 0.559-0.833), a mean sensitivity of 0.80 (SD 0.11), a mean specificity of 0.60 (SD 0.04), and a mean negative predictive value of 0.93 (SD 0.04). Conclusions: The findings of this study suggest that the risk prediction model can identify patients with PsO at a high risk of PsA. This model may help health care professionals to prioritize treatment for target high-risk populations and prevent irreversible disease progression and functional loss.
KW - convolutional neural network
KW - deep learning, machine learning
KW - electronic medical records
KW - prediction model
KW - psoriasis
KW - psoriatic arthritis
KW - temporal phenomic map
UR - http://www.scopus.com/inward/record.url?scp=85151168493&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85151168493&partnerID=8YFLogxK
U2 - 10.2196/39972
DO - 10.2196/39972
M3 - Article
C2 - 36976633
AN - SCOPUS:85151168493
SN - 1439-4456
VL - 25
JO - Journal of Medical Internet Research
JF - Journal of Medical Internet Research
M1 - e39972
ER -