TY - JOUR
T1 - Low concentration of oxidized low density lipoprotein suppresses platelet reactivity in vitro
T2 - An intracellular study
AU - Chou, Duen Suey
AU - Hsiao, George
AU - Shen, Ming Yi
AU - Fong, Tsorng Harn
AU - Lin, Chien Huang
AU - Chen, Tzeng-Fu
AU - Sheu, Joen Rong
N1 - Funding Information:
This work was supported by a grant from the National Science Council of Taiwan (NSC 92-2320-B-038-026).
PY - 2004/5
Y1 - 2004/5
N2 - The intracellular mechanisms underlying oxidized low density lipoprotein (oxLDL)-signaling pathways in platelets remain obscure and findings have been controversial. Therefore, we examined the influence of oxLDL in washed human platelets. In this study, oxLDL concentration-dependently (20-100 μg/mL) inhibited platelet aggregation in human platelets stimulated by collagen (1 μg/mL) and arachidonic acid (60 μM), but not by thrombin (0.02 U/mL). The activity of oxLDL was greater at 24 h in inhibiting platelet aggregation than at 12 h. At 24 h, oxLDL concentration-dependency inhibited intracellular Ca 2+ mobilization and thromboxane B2 formation in human platelets stimulated by collagen. In addition, at 24 h oxLDL (40 and 80 μg/mL) significantly increased the formation of cyclic AMP, but not cyclic GMP or nitrate. In an ESR study, 24 h-oxLDL (40 μg/mL) markedly reduced the ESR signal intensity of hydroxyl radicals (OH-) in both collagen (2 μg/mL)-activated platelets and Fenton reaction (H2O2 + Fe2+). The inhibitory effect of oxLDL may induce radical-radical termination reactions by oxLDL-derived lipid radical interactions with free radicals (such as hydroxyl radicals) released from activated platelets, with a resultant lowering of intracellular Ca2+ mobilization, followed by inhibition of thromboxane A2 formation, thereby leading to increased cyclic AMP formation and finally inhibited platelet aggregation. This study provides new insights concerning the effect of oxLDL in platelet aggregation.
AB - The intracellular mechanisms underlying oxidized low density lipoprotein (oxLDL)-signaling pathways in platelets remain obscure and findings have been controversial. Therefore, we examined the influence of oxLDL in washed human platelets. In this study, oxLDL concentration-dependently (20-100 μg/mL) inhibited platelet aggregation in human platelets stimulated by collagen (1 μg/mL) and arachidonic acid (60 μM), but not by thrombin (0.02 U/mL). The activity of oxLDL was greater at 24 h in inhibiting platelet aggregation than at 12 h. At 24 h, oxLDL concentration-dependency inhibited intracellular Ca 2+ mobilization and thromboxane B2 formation in human platelets stimulated by collagen. In addition, at 24 h oxLDL (40 and 80 μg/mL) significantly increased the formation of cyclic AMP, but not cyclic GMP or nitrate. In an ESR study, 24 h-oxLDL (40 μg/mL) markedly reduced the ESR signal intensity of hydroxyl radicals (OH-) in both collagen (2 μg/mL)-activated platelets and Fenton reaction (H2O2 + Fe2+). The inhibitory effect of oxLDL may induce radical-radical termination reactions by oxLDL-derived lipid radical interactions with free radicals (such as hydroxyl radicals) released from activated platelets, with a resultant lowering of intracellular Ca2+ mobilization, followed by inhibition of thromboxane A2 formation, thereby leading to increased cyclic AMP formation and finally inhibited platelet aggregation. This study provides new insights concerning the effect of oxLDL in platelet aggregation.
UR - http://www.scopus.com/inward/record.url?scp=4544372154&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=4544372154&partnerID=8YFLogxK
U2 - 10.1007/s11745-004-1248-9
DO - 10.1007/s11745-004-1248-9
M3 - Article
C2 - 15506238
AN - SCOPUS:4544372154
SN - 0024-4201
VL - 39
SP - 433
EP - 440
JO - Lipids
JF - Lipids
IS - 5
ER -