TY - JOUR
T1 - lnc-IL7R Expression Reflects Physiological Pulmonary Function and Its Aberration Is a Putative Indicator of COPD
AU - Bamodu, Oluwaseun Adebayo
AU - Wu, Sheng Ming
AU - Feng, Po Hao
AU - Sun, Wei Lun
AU - Lin, Cheng Wei
AU - Chuang, Hsiao Chi
AU - Ho, Shu Chuan
AU - Chen, Kuan Yuan
AU - Chen, Tzu Tao
AU - Tseng, Chien Hua
AU - Liu, Wen Te
AU - Lee, Kang Yun
N1 - Funding Information:
Funding: This study was funded by grants from the Ministry of Science & Technology of Taiwan grants MOST108-2314-B-038-111-MY3, MOST108-2314-B-038-063-MY3, the Ministry of Education of the Republic of China, DP2-110-21121-01-T-01-01, and Taipei Medical University/Shuang Ho Hospital 108TMU-SHH-08, 110TMU-SHH-19.
Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/4
Y1 - 2022/4
N2 - Despite rapidly evolving pathobiological mechanistic demystification, coupled with ad-vances in diagnostic and therapeutic modalities, chronic obstructive pulmonary disease (COPD) remains a major healthcare and clinical challenge, globally. Further compounded by the dearth of available curative anti-COPD therapy, it is posited that this challenge may not be dissociated from the current lack of actionable COPD pathognomonic molecular biomarkers. There is accruing evidence of the involvement of protracted ‘smoldering’ inflammation, repeated lung injury, and accelerated lung aging in enhanced predisposition to or progression of COPD. The relatively novel uncharacterized human long noncoding RNA lnc-IL7R (otherwise called LOC100506406) is increasingly designated a negative modulator of inflammation and regulator of cellular stress responses; however, its role in pulmonary physiology and COPD pathogenesis remains largely unclear and underexplored. Our previous work suggested that upregulated lnc-IL7R expression attenuates inflammation following the activation of the toll-like receptor (TLR)-dependent innate immune system, and that the up-regulated lnc-IL7R is anti-correlated with concomitant high PM2.5, PM10, and SO2 levels, which is pathognomonic for exacerbated/aggravated COPD in Taiwan. In the present study, our quantitative analysis of lnc-IL7R expression in our COPD cohort (n = 125) showed that the lnc-IL7R level was significantly correlated with physiological pulmonary function and exhibited COPD-based stratification implications (area under the curve, AUC = 0.86, p < 0.001). We found that the lnc-IL7R level correctly identified patients with COPD (sensitivity = 0.83, specificity = 0.83), precisely discriminated those without emphysematous phenotype (sensitivity = 0.48, specificity = 0.89), and its differential expression reflected disease course based on its correlation with the COPD GOLD stage (r = −0.59, p < 0.001), %LAA-950insp (r = −0.30, p = 0.002), total LAA (r = −0.35, p < 0.001), FEV1 (%) (r = 0.52, p < 0.001), FVC (%) (r = 0.45, p < 0.001), and post-bronchodilator FEV1 /FVC (r = 0.41, p < 0.001). Consistent with other data, our bioinformatics-aided dose–response plot showed that the probability of COPD decreased as lnc-IL7R expression increased, thus, corroborating our posited anti-COPD therapeutic potential of lnc-IL7R. In conclusion, reduced lnc-IL7R expression not only is associated with inflammation in the airway epithelial cells but is indicative of impaired pulmonary function, pathognomonic of COPD, and predictive of an exacerbated/ aggravated COPD phenotype. These data provide new mechanistic insights into the ailing lung and COPD progression, as well as suggest a novel actionable molecular factor that may be exploited as an efficacious therapeutic strategy in patients with COPD.
AB - Despite rapidly evolving pathobiological mechanistic demystification, coupled with ad-vances in diagnostic and therapeutic modalities, chronic obstructive pulmonary disease (COPD) remains a major healthcare and clinical challenge, globally. Further compounded by the dearth of available curative anti-COPD therapy, it is posited that this challenge may not be dissociated from the current lack of actionable COPD pathognomonic molecular biomarkers. There is accruing evidence of the involvement of protracted ‘smoldering’ inflammation, repeated lung injury, and accelerated lung aging in enhanced predisposition to or progression of COPD. The relatively novel uncharacterized human long noncoding RNA lnc-IL7R (otherwise called LOC100506406) is increasingly designated a negative modulator of inflammation and regulator of cellular stress responses; however, its role in pulmonary physiology and COPD pathogenesis remains largely unclear and underexplored. Our previous work suggested that upregulated lnc-IL7R expression attenuates inflammation following the activation of the toll-like receptor (TLR)-dependent innate immune system, and that the up-regulated lnc-IL7R is anti-correlated with concomitant high PM2.5, PM10, and SO2 levels, which is pathognomonic for exacerbated/aggravated COPD in Taiwan. In the present study, our quantitative analysis of lnc-IL7R expression in our COPD cohort (n = 125) showed that the lnc-IL7R level was significantly correlated with physiological pulmonary function and exhibited COPD-based stratification implications (area under the curve, AUC = 0.86, p < 0.001). We found that the lnc-IL7R level correctly identified patients with COPD (sensitivity = 0.83, specificity = 0.83), precisely discriminated those without emphysematous phenotype (sensitivity = 0.48, specificity = 0.89), and its differential expression reflected disease course based on its correlation with the COPD GOLD stage (r = −0.59, p < 0.001), %LAA-950insp (r = −0.30, p = 0.002), total LAA (r = −0.35, p < 0.001), FEV1 (%) (r = 0.52, p < 0.001), FVC (%) (r = 0.45, p < 0.001), and post-bronchodilator FEV1 /FVC (r = 0.41, p < 0.001). Consistent with other data, our bioinformatics-aided dose–response plot showed that the probability of COPD decreased as lnc-IL7R expression increased, thus, corroborating our posited anti-COPD therapeutic potential of lnc-IL7R. In conclusion, reduced lnc-IL7R expression not only is associated with inflammation in the airway epithelial cells but is indicative of impaired pulmonary function, pathognomonic of COPD, and predictive of an exacerbated/ aggravated COPD phenotype. These data provide new mechanistic insights into the ailing lung and COPD progression, as well as suggest a novel actionable molecular factor that may be exploited as an efficacious therapeutic strategy in patients with COPD.
KW - %LAA
KW - chronic obstructive pulmonary disease (COPD)
KW - FEV (%)
KW - FVC(%)
KW - GOLD stage
KW - lnc-IL7R
KW - long noncoding RNA
KW - lung inflammation
KW - pulmonary function
UR - http://www.scopus.com/inward/record.url?scp=85128416504&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85128416504&partnerID=8YFLogxK
U2 - 10.3390/biomedicines10040786
DO - 10.3390/biomedicines10040786
M3 - Article
AN - SCOPUS:85128416504
SN - 2227-9059
VL - 10
JO - Biomedicines
JF - Biomedicines
IS - 4
M1 - 786
ER -