Lipopolysaccharide induces ICAM-1 expression via a c-Src/NADPH oxidase/ROS-dependent NF-κB pathway in human pulmonary alveolar epithelial cells

Rou Ling Cho, Chien Chung Yang, I-Ta Lee, Chih Chung Lin, Pei Ling Chi, Li Der Hsiao, Chuen Mao Yang

Research output: Contribution to journalArticlepeer-review

66 Citations (Scopus)


Upregulation of intercellular adhesion molecule-1 (ICAM-1) is frequently implicated in lung inflammation. Lipopolysaccharide (LPS) has been shown to play a key role in inflammation via adhesion molecule induction and then causes lung injury. However, the mechanisms underlying LPS-induced ICAM-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs) remain unclear. We showed that LPS induced ICAM-1 expression in HPAEpiCs, revealed by Western blotting, RT-PCR, real-time PCR, and promoter assay. Pretreatment with the inhibitor of c-Src (protein phosphatase-1, PP1), reactive oxygen species (ROS) (Edaravone), NADPH oxidase (apocynin and diphenyleneiodonium chloride), EGFR (AG1478), PDGFR (AG1296), phosphatidylinositol-3-kinase (PI3K) (LY294002), MEK1/2 (U0126), or NF-κB (Bay11-7082) and transfection with siRNAs of c-Src, EGFR, PDGFR, Akt, p47phox, Nox2, Nox4, p42, and p65 markedly reduced LPS-induced ICAM-1 expression and monocyte adherence to HPAEpiCs challenged with LPS. In addition, we established that LPS stimulated phosphorylation of c-Src, EGFR, PDGFR, Akt, or p65, which was inhibited by pretreatment with their respective inhibitors. LPS induced Toll-like receptor 4 (TLR4), MyD88, TNF receptor-associated factor 6 (TRAF6), c-Src, p47phox, and Rac1 complex formation 2, which was attenuated by transfection with c-Src or TRAF6 siRNA. Furthermore, LPS markedly enhanced NADPH oxidase activation and intracellular ROS generation, which were inhibited by PP1. We established that LPS induced p42/p44 MAPK activation via a c-Src/NADPH oxidase/ ROS/EGFR, PDGFR/PI3K/Akt-dependent pathway in these cells. Finally, we observed that LPS significantly enhanced NF-κB and IκBα phosphorylation, NF-κB translocation, and NF-κB promoter activity, which were inhibited by PP1, Edaravone, apocynin, diphenyleneiodonium chloride, AG1478, AG1296, LY294002, or U0126. These results demonstrated that LPS induces p42/p44 MAPK activation mediated through the TLR4/MyD88/TRAF6/c-Src/NADPH oxidase/ ROS/EGFR, PDGFR/PI3K/Akt pathway, which in turn initiates the activation of NF-κB and ultimately induces ICAM-1 expression in HPAEpiCs.

Original languageEnglish
Pages (from-to)L639-L657
JournalAmerican Journal of Physiology - Lung Cellular and Molecular Physiology
Issue number7
Publication statusPublished - Apr 1 2016
Externally publishedYes


  • Adhesion molecules
  • Lipopolysaccharide
  • Lung inflammation
  • Signaling pathway
  • Transcription factor

ASJC Scopus subject areas

  • Physiology
  • Pulmonary and Respiratory Medicine
  • Cell Biology
  • Physiology (medical)


Dive into the research topics of 'Lipopolysaccharide induces ICAM-1 expression via a c-Src/NADPH oxidase/ROS-dependent NF-κB pathway in human pulmonary alveolar epithelial cells'. Together they form a unique fingerprint.

Cite this