́-lipoic acid regulates lipid metabolism through induction of Sirtuin 1 (SIRT1) and activation of AMP-activated protein kinase

W. L. Chen, C. H. Kang, S. G. Wang, H. M. Lee

Research output: Contribution to journalArticlepeer-review

118 Citations (Scopus)

Abstract

Aims/hypothesis Sirtuin 1 (SIRT1) is a longevity-associated protein, which regulates energy metabolism and lifespan in response to nutrient deprivation. It has been proposed to be a therapeutic target for obesity and metabolic syndrome. We investigated whether á-lipoic acid (ALA) exerts a lipidlowering effect through regulation of SIRT1 activation and production in C2C12 myotubes. Methods ALA-stimulated AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), adipose triacylglycerol lipase (ATGL) and fatty acid synthase (FAS) production, as well as intracellular triacylglycerol accumulation and fatty acid β-oxidation were analysed in the absence or presence of a SIRT1 inhibitor (nicotinamide), SIRT1 small interfering (si) RNA and an AMPK inhibitor (compound C) in C2C12 myotubes. Mice with streptozotocin/nicotinamideinduced diabetes and db/db mice fed on a high-fat diet were used to study the ALA-mediated lipid-lowering effects in vivo. Results ALA increased the NAD+/NADH ratio to enhance SIRT1 activity and production in C2C12 myotubes. ALA subsequently increased AMPK and ACC phosphorylation, leading to increased palmitate β-oxidation and decreased intracellular triacylglycerol accumulation in C2C12 myotubes. In cells treated with nicotinamide or transfected with SIRT1 siRNA, ALA-mediated AMPK/ACC phosphorylation, intracellular triacylglycerol accumulation and palmitate β-oxidation were reduced, suggesting that SIRT1 is an upstream regulator of AMPK. ALA increased ATGL and suppressed FAS protein production in C2C12 myotubes. Oral administration of ALA in diabetic mice fed on a high-fat diet and db/db mice dramatically reduced the body weight and visceral fat content. Conclusions/interpretation ALA activates both SIRT1 and AMPK, which leads to lipid-lowering effects in vitro and in vivo. These findings suggest that ALA may have beneficial effects in the treatment of dyslipidaemia and obesity.

Original languageEnglish
Pages (from-to)1824-1835
Number of pages12
JournalDiabetologia
Volume55
Issue number6
DOIs
Publication statusPublished - Jun 2012

Keywords

  • AMPK
  • ATGL
  • SIRT1
  • ́-lipoic acid

ASJC Scopus subject areas

  • Internal Medicine
  • Endocrinology, Diabetes and Metabolism

Fingerprint

Dive into the research topics of '́-lipoic acid regulates lipid metabolism through induction of Sirtuin 1 (SIRT1) and activation of AMP-activated protein kinase'. Together they form a unique fingerprint.

Cite this