TY - JOUR
T1 - Lecithin-Stabilized Polymeric Micelles (LsbPMs) for Delivering Quercetin: Pharmacokinetic Studies and Therapeutic Effects of Quercetin Alone and in Combination with Doxorubicin
AU - Chang, Chia-En
AU - Hsieh, Chien-Ming
AU - Huang, Sheng-Chin
AU - Su, Chia-Yu
AU - Sheu, Ming-Thau
AU - Ho, Hsiu-O.
PY - 2018/12/1
Y1 - 2018/12/1
N2 - In this study, lecithin-stabilized polymeric micelles (LsbPMs) were prepared to load quercetin (QUE) in order to improve its bioavailability and increase its antitumor activity. Its combination with doxorubicin (DOX) to minimize DOX-mediated cardiac toxicity and increase the antitumor activity of QUE-loaded LsbPMs was also examined. LsbPMs were prepared following a previously reported procedure. Results demonstrated that optimal QUE-loaded LsbPMs contained quercetin, D-α-tocopheryl polyethylene glycol succinate, and lecithin at a weight ratio of 6:40:80. Drug-release studies showed that QUE released from LsbPMs followed a controlled release pattern. A cytotoxicity assay revealed that QUE-loaded LsbPMs had significant anticancer activities against MCF-7, SKBR-3, and MDA-MB-231 human breast cancer cells and CT26 mouse colon cancer cells. In animal studies, intravenous administration of QUE-loaded LsbPMs resulted in efficient growth inhibition of CT26 colon cancer cells in a Balb/c mice model. In a pharmacokinetics study compared to free QUE, intravenous and oral administration of QUE-loaded LsbPMs was found to have significantly increased the relative bioavailability to 158% and 360%, respectively, and the absolute bioavailability to 5.13%. The effect of QUE-loaded LsbPMs in combination with DOX resulted in efficient growth inhibition of CT26 colon cancer cells and reduced cardiac toxicity in the Balb/c mice model.
AB - In this study, lecithin-stabilized polymeric micelles (LsbPMs) were prepared to load quercetin (QUE) in order to improve its bioavailability and increase its antitumor activity. Its combination with doxorubicin (DOX) to minimize DOX-mediated cardiac toxicity and increase the antitumor activity of QUE-loaded LsbPMs was also examined. LsbPMs were prepared following a previously reported procedure. Results demonstrated that optimal QUE-loaded LsbPMs contained quercetin, D-α-tocopheryl polyethylene glycol succinate, and lecithin at a weight ratio of 6:40:80. Drug-release studies showed that QUE released from LsbPMs followed a controlled release pattern. A cytotoxicity assay revealed that QUE-loaded LsbPMs had significant anticancer activities against MCF-7, SKBR-3, and MDA-MB-231 human breast cancer cells and CT26 mouse colon cancer cells. In animal studies, intravenous administration of QUE-loaded LsbPMs resulted in efficient growth inhibition of CT26 colon cancer cells in a Balb/c mice model. In a pharmacokinetics study compared to free QUE, intravenous and oral administration of QUE-loaded LsbPMs was found to have significantly increased the relative bioavailability to 158% and 360%, respectively, and the absolute bioavailability to 5.13%. The effect of QUE-loaded LsbPMs in combination with DOX resulted in efficient growth inhibition of CT26 colon cancer cells and reduced cardiac toxicity in the Balb/c mice model.
UR - http://www.scopus.com/inward/record.url?scp=85057767233&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85057767233&partnerID=8YFLogxK
U2 - 10.1038/s41598-018-36162-0
DO - 10.1038/s41598-018-36162-0
M3 - Article
SN - 2045-2322
VL - 8
SP - 17640
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 17640
ER -