TY - JOUR
T1 - L-type calcium channels and μ-opioid receptors are involved in mediating the anti-inflammatory effects of naloxone
AU - Jan, Woan Ching
AU - Chen, Cay Huyen
AU - Hsu, Kuei
AU - Tsai, Pei Shan
AU - Huang, Chun Jen
PY - 2011/5/15
Y1 - 2011/5/15
N2 - Background: We sought to elucidate the effects of naloxone on regulating the up-regulation of inflammatory molecules and activation of the transcription factor nuclear factor-kappaB (NF-κB) induced by endotoxin. Possible roles of the μ-opioid receptors and L-type calcium channels in mediating the effects of naloxone in this regard were also investigated. Materials and Methods: RAW264.7 cells were treated with phosphate buffered saline, naloxone, lipopolysaccharide (LPS), LPS plus naloxone, LPS plus naloxone plus morphine (i.e., the nonselective opioid receptors agonist), LPS plus naloxone plus fentanyl (i.e., the μ-opioid receptors agonist), or LPS plus naloxone plus BAY-K8644 (i.e., the L-type calcium channel activator). After harvesting, production of inflammatory molecules and expression NF-κB were evaluated. Results: The effects of LPS on inducing the up-regulation of macrophage inflammatory protein-2, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, nitric oxide/inducible nitric oxide synthase, and prostaglandin E 2/cyclooxygenase 2 were inhibited by naloxone. Naloxone also inhibited the effects of LPS on inducing NF-κB activation, including inhibitor-κB (I-κB) degradation, NF-κB nuclear translocation, and NF-κB-DNA binding. The effects of naloxone on inhibiting IL-1β up-regulation and NF-κB activation were enhanced by morphine. In contrast, the effects of naloxone on inhibiting IL-1β up-regulation and I-κB degradation were counteracted by fentanyl. Moreover, except for TNF-α, the effects of naloxone on inhibiting inflammatory molecules up-regulation and NF-κB activation were significantly counteracted by BAY-K8644. Conclusions: Naloxone significantly inhibited endotoxin-induced up-regulation of inflammatory molecules and NF-κB activation. The mechanisms may involve antagonizing the L-type calcium channels and, to a lesser extent, the μ-opioid receptors.
AB - Background: We sought to elucidate the effects of naloxone on regulating the up-regulation of inflammatory molecules and activation of the transcription factor nuclear factor-kappaB (NF-κB) induced by endotoxin. Possible roles of the μ-opioid receptors and L-type calcium channels in mediating the effects of naloxone in this regard were also investigated. Materials and Methods: RAW264.7 cells were treated with phosphate buffered saline, naloxone, lipopolysaccharide (LPS), LPS plus naloxone, LPS plus naloxone plus morphine (i.e., the nonselective opioid receptors agonist), LPS plus naloxone plus fentanyl (i.e., the μ-opioid receptors agonist), or LPS plus naloxone plus BAY-K8644 (i.e., the L-type calcium channel activator). After harvesting, production of inflammatory molecules and expression NF-κB were evaluated. Results: The effects of LPS on inducing the up-regulation of macrophage inflammatory protein-2, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, nitric oxide/inducible nitric oxide synthase, and prostaglandin E 2/cyclooxygenase 2 were inhibited by naloxone. Naloxone also inhibited the effects of LPS on inducing NF-κB activation, including inhibitor-κB (I-κB) degradation, NF-κB nuclear translocation, and NF-κB-DNA binding. The effects of naloxone on inhibiting IL-1β up-regulation and NF-κB activation were enhanced by morphine. In contrast, the effects of naloxone on inhibiting IL-1β up-regulation and I-κB degradation were counteracted by fentanyl. Moreover, except for TNF-α, the effects of naloxone on inhibiting inflammatory molecules up-regulation and NF-κB activation were significantly counteracted by BAY-K8644. Conclusions: Naloxone significantly inhibited endotoxin-induced up-regulation of inflammatory molecules and NF-κB activation. The mechanisms may involve antagonizing the L-type calcium channels and, to a lesser extent, the μ-opioid receptors.
KW - NF-κB
KW - chemokine
KW - cytokine
KW - endotoxin
KW - macrophages
UR - http://www.scopus.com/inward/record.url?scp=79954604430&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79954604430&partnerID=8YFLogxK
U2 - 10.1016/j.jss.2010.03.039
DO - 10.1016/j.jss.2010.03.039
M3 - Article
C2 - 20605582
AN - SCOPUS:79954604430
SN - 0022-4804
VL - 167
SP - e263-e272
JO - Journal of Surgical Research
JF - Journal of Surgical Research
IS - 2
ER -