TY - JOUR
T1 - L-carnitine via PPARγ- and Sirt1-dependent mechanisms attenuates epithelial-mesenchymal transition and renal fibrosis caused by perfluorooctanesulfonate
AU - Chou, Hsiu Chu
AU - Wen, Li Li
AU - Chang, Chih Cheng
AU - Lin, Chien Yu
AU - Jin, Lu
AU - Juan, Shu Hui
N1 - Publisher Copyright:
© The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved.
PY - 2017/12/1
Y1 - 2017/12/1
N2 - We have previously reported that perfluorooctanesulfonate (PFOS) causes cell apoptosis in renal tubular epithelial cells (RTCs). Here, we extend our findings and provide evidence of epithelial-mesenchymal transition (EMT)-associated renal fibrosis caused by PFOS and the protection by L-carnitine. Our results demonstrate that PFOS increased the expression of EMT and renal injury biomarkers (eg, N-cadherin, vimentin, Snail, Kim1, and Lcn2). In addition, PFOS caused EMT induction through Sirt1-mediated PPARγ deacetylation and inactivation. L-carnitine reversed the EMT induction caused by PFOS and alleviated PFOS-mediated increases in cellmigration by reactivating PPARγ through the inhibition of Sirt1 activity. The critical role of Sirt1 in this process was validated by using Sirt1 overexpression, resveratrol (a pharmacologic activator of Sirt1), nicotinamide (a Sirt1 inhibitor) and siSirt1. Nicotinamide and siSirt1, but not Sirt1 overexpression and resveratrol, alleviated PFOSmediated EMT induction, suggesting that increased Sirt1 activity contributed to the alterations. Furthermore, through PPARγ overexpression and pharmacologic interventions, we validated the crucial role of increased PPARγ deacetylation caused by aberrant increased Sirt1 activity in RTC transformation. Similar to PPARγ overexpression, rosiglitazone (a PPARγ agonist) alleviated the effects of PFOS on the EMT-related features, whereas GW9662 (a PPARγ antagonist)mimicked the effects. The protective effect of L-carnitine was also verified in amousemodel of chronic PFOS exposure, in which decreased EMT biomarker levels and renal fibrosis by L-carnitine were observed inWestern blot and histological analyses. Accordingly, L-carnitine alleviated EMT-associated renal fibrosis caused by PFOS through a Sirt1- and PPARγ-dependentmechanism.
AB - We have previously reported that perfluorooctanesulfonate (PFOS) causes cell apoptosis in renal tubular epithelial cells (RTCs). Here, we extend our findings and provide evidence of epithelial-mesenchymal transition (EMT)-associated renal fibrosis caused by PFOS and the protection by L-carnitine. Our results demonstrate that PFOS increased the expression of EMT and renal injury biomarkers (eg, N-cadherin, vimentin, Snail, Kim1, and Lcn2). In addition, PFOS caused EMT induction through Sirt1-mediated PPARγ deacetylation and inactivation. L-carnitine reversed the EMT induction caused by PFOS and alleviated PFOS-mediated increases in cellmigration by reactivating PPARγ through the inhibition of Sirt1 activity. The critical role of Sirt1 in this process was validated by using Sirt1 overexpression, resveratrol (a pharmacologic activator of Sirt1), nicotinamide (a Sirt1 inhibitor) and siSirt1. Nicotinamide and siSirt1, but not Sirt1 overexpression and resveratrol, alleviated PFOSmediated EMT induction, suggesting that increased Sirt1 activity contributed to the alterations. Furthermore, through PPARγ overexpression and pharmacologic interventions, we validated the crucial role of increased PPARγ deacetylation caused by aberrant increased Sirt1 activity in RTC transformation. Similar to PPARγ overexpression, rosiglitazone (a PPARγ agonist) alleviated the effects of PFOS on the EMT-related features, whereas GW9662 (a PPARγ antagonist)mimicked the effects. The protective effect of L-carnitine was also verified in amousemodel of chronic PFOS exposure, in which decreased EMT biomarker levels and renal fibrosis by L-carnitine were observed inWestern blot and histological analyses. Accordingly, L-carnitine alleviated EMT-associated renal fibrosis caused by PFOS through a Sirt1- and PPARγ-dependentmechanism.
KW - Epithelial-to-mesenchymal transition
KW - Perfluorooctanesulfonate
KW - Peroxisome proliferator-activated receptor gamma
KW - Renal fibrosis
KW - Silent information regulator T1
UR - http://www.scopus.com/inward/record.url?scp=85042559810&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85042559810&partnerID=8YFLogxK
U2 - 10.1093/toxsci/kfx183
DO - 10.1093/toxsci/kfx183
M3 - Article
AN - SCOPUS:85042559810
SN - 1096-6080
VL - 160
SP - 217
EP - 229
JO - Toxicological Sciences
JF - Toxicological Sciences
IS - 2
ER -