Iron Pyrite/Titanium Dioxide Photoanode for Extended Near Infrared Light Harvesting in a Photoelectrochemical Cell

Di Yan Wang, Cheng Hung Li, Shao Sian Li, Tsung Rong Kuo, Chin Ming Tsai, Tin Reui Chen, Ying Chiao Wang, Chun Wei Chen, Chia Chun Chen

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)

Abstract

The design of active and stable semiconducting composites with enhanced photoresponse from visible light to near infrared (NIR) is a key to improve solar energy harvesting for photolysis of water in photoelectrochemical cell. In this study, we prepared earth abundant semiconducting composites consisting of iron pyrite and Titanium oxide as a photoanode (FeS 2/TiO 2 photoanode) for photoelectrochemical applications. The detailed structure and atomic compositions of FeS 2/TiO 2 photoanode was characterized by high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (XRD), inductively coupled plasma with atomic emission spectroscopy (ICPAES) and Raman spectroscopy. Through the proper sulfurization treatment, the FeS 2/TiO 2 photoanode exhibited high photoresponse from visible light extended to near infrared range (900 nm) as well as stable durability test for 4 hours. We found that the critical factors to enhance the photoresponse are on the elimination of surface defect of FeS 2 and on the enhancement of interface charge transfer between FeS 2 and TiO 2. Our overall results open a route for the design of sulfur-based binary compounds for photoelectrochemical applications.

Original languageEnglish
Article number20397
JournalScientific Reports
Volume6
DOIs
Publication statusPublished - Feb 8 2016
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Iron Pyrite/Titanium Dioxide Photoanode for Extended Near Infrared Light Harvesting in a Photoelectrochemical Cell'. Together they form a unique fingerprint.

Cite this