TY - JOUR
T1 - Ir-6
T2 - A Novel Iridium (III) Organometallic Derivative for Inhibition of Human Platelet Activation
AU - Shyu, Ren Shi
AU - Khamrang, Themmila
AU - Sheu, Joen Rong
AU - Hsia, Chih Wei
AU - Velusamy, Marappan
AU - Hsia, Chih Hsuan
AU - Chou, Duen Suey
AU - Chang, Chao Chien
N1 - Publisher Copyright:
© 2018 Ren-Shi Shyu et al.
PY - 2018/1/1
Y1 - 2018/1/1
N2 - Platelet activation has been reported to play a major role in arterial thrombosis, cancer metastasis, and progression. Recently, we developed a novel Ir(III)-based compound, [Ir(Cp)1-(2-pyridyl)-3-(4-dimethylaminophenyl)imidazo[1,5-a]pyridine Cl]BF4 or Ir-6 and assessed its effectiveness as an antiplatelet drug. Ir-6 exhibited higher potency against human platelet aggregation stimulated by collagen. Ir-6 also inhibited ATP-release, intracellular Ca2+ mobilization, P-selectin expression, and the phosphorylation of phospholipase Cγ2 (PLCγ2), protein kinase C (PKC), v-Akt murine thymoma viral oncogene (Akt)/protein kinase B, and mitogen-activated protein kinases (MAPKs), in collagen-activated platelets. Neither the adenylate cyclase inhibitor SQ22536 nor the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one significantly reversed the Ir-6-mediated inhibition of collagen-induced platelet aggregation. Moreover, Ir-6 did not considerably diminish OH radical signals in collagen-activated platelets or Fenton reaction solution. At 2 mg/kg, Ir-6 markedly prolonged the bleeding time in experimental mice. In conclusion, Ir-6 plays a crucial role by inhibiting platelet activation through the inhibition of signaling pathways, such as the PLCγ2-PKC cascade and the subsequent suppression of Akt and MAPK activation, thereby ultimately inhibiting platelet aggregation. Therefore, Ir-6 is a potential therapeutic agent for preventing or treating thromboembolic disorders or disrupting the interplay between platelets and tumor cells, which contributes to tumor cell growth and progression.
AB - Platelet activation has been reported to play a major role in arterial thrombosis, cancer metastasis, and progression. Recently, we developed a novel Ir(III)-based compound, [Ir(Cp)1-(2-pyridyl)-3-(4-dimethylaminophenyl)imidazo[1,5-a]pyridine Cl]BF4 or Ir-6 and assessed its effectiveness as an antiplatelet drug. Ir-6 exhibited higher potency against human platelet aggregation stimulated by collagen. Ir-6 also inhibited ATP-release, intracellular Ca2+ mobilization, P-selectin expression, and the phosphorylation of phospholipase Cγ2 (PLCγ2), protein kinase C (PKC), v-Akt murine thymoma viral oncogene (Akt)/protein kinase B, and mitogen-activated protein kinases (MAPKs), in collagen-activated platelets. Neither the adenylate cyclase inhibitor SQ22536 nor the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one significantly reversed the Ir-6-mediated inhibition of collagen-induced platelet aggregation. Moreover, Ir-6 did not considerably diminish OH radical signals in collagen-activated platelets or Fenton reaction solution. At 2 mg/kg, Ir-6 markedly prolonged the bleeding time in experimental mice. In conclusion, Ir-6 plays a crucial role by inhibiting platelet activation through the inhibition of signaling pathways, such as the PLCγ2-PKC cascade and the subsequent suppression of Akt and MAPK activation, thereby ultimately inhibiting platelet aggregation. Therefore, Ir-6 is a potential therapeutic agent for preventing or treating thromboembolic disorders or disrupting the interplay between platelets and tumor cells, which contributes to tumor cell growth and progression.
UR - http://www.scopus.com/inward/record.url?scp=85048167359&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048167359&partnerID=8YFLogxK
U2 - 10.1155/2018/8291393
DO - 10.1155/2018/8291393
M3 - Article
C2 - 29853830
AN - SCOPUS:85048167359
SN - 1565-3633
VL - 2018
SP - 8291393
JO - Bioinorganic Chemistry and Applications
JF - Bioinorganic Chemistry and Applications
M1 - 8291393
ER -