TY - JOUR
T1 - Involvement of Reactive Oxygen Species in Angiotensin II-Induced Endothelin-1 Gene Expression in Rat Cardiac Fibroblasts
AU - Cheng, Tzu Hurng
AU - Cheng, Pao Yun
AU - Shih, Neng Lang
AU - Chen, Iuan Bor
AU - Wang, Danny Ling
AU - Chen, Jin Jer
PY - 2003/11/19
Y1 - 2003/11/19
N2 - OBJECTIVES: The aim of this study was to investigate the effects of angiotensin II (Ang II) on fibroblast proliferation and endothelin-1 (ET-1) gene induction, focusing especially on reactive oxygen species (ROS)-mediated signaling in cardiac fibroblasts. BACKGROUND: Angiotensin II increases ET-1 expression, which plays an important role in Ang II-induced fibroblast proliferation. Angiotensin II also stimulates ROS generation in cardiac fibroblasts. However, whether ROS are involved in Ang II-induced proliferation and ET-1 expression remains unknown. METHODS: Cultured neonatal rat cardiac fibroblasts were stimulated with Ang II, and then [3H]thymidine incorporation and the ET-1 gene expression were examined. We also examined the effects of antioxidants on Ang II-induced proliferation and mitogen-activated protein kinase (MAPK) phosphorylation to elucidate the redox-sensitive pathway in fibroblast proliferation and ET-1 gene expression. RESULTS: Both AT 1 receptor antagonist (losartan) and ETA receptor antagonist (BQ485) inhibited Ang II-increased DNA synthesis. Endothelin-1 gene was induced with Ang II as revealed by Northern blotting and promoter activity assay. Angiotensin II increased intracellular ROS levels, which were inhibited with losartan and antioxidants. Antioxidants further suppressed Ang II-induced ET-1 gene expression, DNA synthesis, and MAPK phosphorylation. PD98059, but not SB203580, fully inhibited Ang II-induced ET-1 expression. Truncation and mutational analysis of the ET-1 gene promoter showed that AP-1 binding site was an important cis-element in Ang II-induced ET-1 gene expression. CONCLUSIONS: Our data suggest that ROS are involved in Ang II-induced proliferation and ET-1 gene expression. Our findings imply that the combination of ATI and ETA receptor antagonists plus antioxidants may be beneficial in preventing the formation of excessive cardiac fibrosis.
AB - OBJECTIVES: The aim of this study was to investigate the effects of angiotensin II (Ang II) on fibroblast proliferation and endothelin-1 (ET-1) gene induction, focusing especially on reactive oxygen species (ROS)-mediated signaling in cardiac fibroblasts. BACKGROUND: Angiotensin II increases ET-1 expression, which plays an important role in Ang II-induced fibroblast proliferation. Angiotensin II also stimulates ROS generation in cardiac fibroblasts. However, whether ROS are involved in Ang II-induced proliferation and ET-1 expression remains unknown. METHODS: Cultured neonatal rat cardiac fibroblasts were stimulated with Ang II, and then [3H]thymidine incorporation and the ET-1 gene expression were examined. We also examined the effects of antioxidants on Ang II-induced proliferation and mitogen-activated protein kinase (MAPK) phosphorylation to elucidate the redox-sensitive pathway in fibroblast proliferation and ET-1 gene expression. RESULTS: Both AT 1 receptor antagonist (losartan) and ETA receptor antagonist (BQ485) inhibited Ang II-increased DNA synthesis. Endothelin-1 gene was induced with Ang II as revealed by Northern blotting and promoter activity assay. Angiotensin II increased intracellular ROS levels, which were inhibited with losartan and antioxidants. Antioxidants further suppressed Ang II-induced ET-1 gene expression, DNA synthesis, and MAPK phosphorylation. PD98059, but not SB203580, fully inhibited Ang II-induced ET-1 expression. Truncation and mutational analysis of the ET-1 gene promoter showed that AP-1 binding site was an important cis-element in Ang II-induced ET-1 gene expression. CONCLUSIONS: Our data suggest that ROS are involved in Ang II-induced proliferation and ET-1 gene expression. Our findings imply that the combination of ATI and ETA receptor antagonists plus antioxidants may be beneficial in preventing the formation of excessive cardiac fibrosis.
UR - http://www.scopus.com/inward/record.url?scp=0242721091&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0242721091&partnerID=8YFLogxK
U2 - 10.1016/j.jacc.2003.06.010
DO - 10.1016/j.jacc.2003.06.010
M3 - Article
C2 - 14642698
AN - SCOPUS:0242721091
SN - 0735-1097
VL - 42
SP - 1845
EP - 1854
JO - Journal of the American College of Cardiology
JF - Journal of the American College of Cardiology
IS - 10
ER -