Inhibition of mitochondria- and endoplasmic reticulum stress-mediated autophagy augments temozolomide-induced apoptosis in glioma cells

Chien Ju Lin, Chin Cheng Lee, Yung Luen Shih, Chien Huang Lin, Sheng Hao Wang, Thay Hsiung Chen, Chwen Ming Shih

Research output: Contribution to journalArticlepeer-review

110 Citations (Scopus)

Abstract

Autophagy is a crucial process for cells to maintain homeostasis and survival through degradation of cellular proteins and organelles, including mitochondria and endoplasmic reticula (ER). We previously demonstrated that temozolomide (TMZ), an alkylating agent for brain tumor chemotherapy, induced reactive oxygen species (ROS)/extracellular signal-regulated kinase (ERK)-mediated autophagy to protect glioma cells from apoptosis. In this study, we investigated the role of mitochondrial damage and ER stress in TMZ-induced cytotoxicity. Mitochondrial depolarization and mitochondrial permeability transition pore (MPTP) opening were observed as a prelude to TMZ-induced autophagy, and these were followed by the loss of mitochondrial mass. Electron transport chain (ETC) inhibitors, such as rotenone (a complex I inhibitor), sodium azide (a complex IV inhibitor), and oligomycin (a complex V inhibitor), or the MPTP inhibitor, cyclosporine A, decreased mitochondrial damage-mediated autophagy, and therefore increased TMZ-induced apoptosis. TMZ treatment triggered ER stress with increased expression of GADD153 and GRP78 proteins, and deceased pro-caspase 12 protein. ER stress consequently induced autophagy through c-Jun N-terminal kinases (JNK) and Ca2+ signaling pathways. Combination of TMZ with 4-phenylbutyrate (4-PBA), an ER stress inhibitor, augmented TMZ-induced cytotoxicity by inhibiting autophagy. Taken together, our data indicate that TMZ induced autophagy through mitochondrial damage- and ER stress-dependent mechanisms to protect glioma cells. This study provides evidence that agents targeting mitochondria or ER may be potential anticancer strategies.

Original languageEnglish
Article numbere38706
JournalPLoS ONE
Volume7
Issue number6
DOIs
Publication statusPublished - Jun 22 2012

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Inhibition of mitochondria- and endoplasmic reticulum stress-mediated autophagy augments temozolomide-induced apoptosis in glioma cells'. Together they form a unique fingerprint.

Cite this