TY - JOUR
T1 - Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced inflammatory skin edema and ornithine decarboxylase activity by theaflavin-3,3’-digallate in mouse
AU - Liang, Yu Chih
AU - Tsai, De Cheng
AU - Lin-Shiau, Shoei Yn
AU - Chen, Chieh Fu
AU - Ho, Chi Tang
AU - Lin, Jen Kun
PY - 2002
Y1 - 2002
N2 - Among black tea polyphenols, theaflavins were generally considered to be the most effective in cancer chemoprevention. In this study, we examined the inhibitory effects of black tea polyphenols, including theaflavin (TF-1), a mixture (TF-2) of theaflavin-3-gallate and theaflavin-3′-gallate, theaflavin-3,3′-digallate (TF-3), and the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced edema and ornithine decarboxylase (ODC) activity. Topical application of these polyphenols onto the mouse resulted in inhibition of TPA-induced ear edema and skin epidermal ODC activity. The inhibitory order was as follows: TF-3 > TF-2≅EGCG > TF-1. Western and Northern blots indicated that TF-3 significantly reduced the protein and mRNA levels of ODC in TPA-treated mouse skin and NIH 3T3 cells, whereas EGCG showed less activity. EGCG and TF-3 were able to inhibit the ODC enzyme activity in vitro. Furthermore, TF-3 also significantly reduced the basal promoter activity of the ODC gene in NIH 3T3 cells that were transiently transfected with ODC reporter plasmid. These results suggested that TF-3 was a potential inhibitor of ODC activity and TPA-induced edema and might be effective in cancer chemoprevention.
AB - Among black tea polyphenols, theaflavins were generally considered to be the most effective in cancer chemoprevention. In this study, we examined the inhibitory effects of black tea polyphenols, including theaflavin (TF-1), a mixture (TF-2) of theaflavin-3-gallate and theaflavin-3′-gallate, theaflavin-3,3′-digallate (TF-3), and the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced edema and ornithine decarboxylase (ODC) activity. Topical application of these polyphenols onto the mouse resulted in inhibition of TPA-induced ear edema and skin epidermal ODC activity. The inhibitory order was as follows: TF-3 > TF-2≅EGCG > TF-1. Western and Northern blots indicated that TF-3 significantly reduced the protein and mRNA levels of ODC in TPA-treated mouse skin and NIH 3T3 cells, whereas EGCG showed less activity. EGCG and TF-3 were able to inhibit the ODC enzyme activity in vitro. Furthermore, TF-3 also significantly reduced the basal promoter activity of the ODC gene in NIH 3T3 cells that were transiently transfected with ODC reporter plasmid. These results suggested that TF-3 was a potential inhibitor of ODC activity and TPA-induced edema and might be effective in cancer chemoprevention.
UR - http://www.scopus.com/inward/record.url?scp=0036035225&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036035225&partnerID=8YFLogxK
U2 - 10.1207/S15327914NC422_11
DO - 10.1207/S15327914NC422_11
M3 - Article
C2 - 12416263
AN - SCOPUS:0036035225
SN - 0163-5581
VL - 42
SP - 217
EP - 223
JO - Nutrition and Cancer
JF - Nutrition and Cancer
IS - 2
ER -