Abstract
Ten pairs of reciprocal crosses have been made between wheat cultivars which show differences in their glutenin subunit compositions. The F1 seed glutenin subunit composition was studied by means of polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate (SDS). The results indicate that all the high molecular weight (HMW) and medium molecular weight (MMW) subunits (from 133,000 to 65,000 daltons) are transmitted to the F1 seed generation from the parental cultivars. In accordance with the triploid nature of the heterozygous endosperm (3n) and with the maternal and paternal gene dosage ratio (2:1) in the endosperm itself, a significant effect of maternal parent is registered when comparing pairs of reciprocal seeds. Genes coding for the glutenin subunits are expressed whatever their doses are (one, two, or three) in the hybrid endosperm; thus the glutenin subunits inheritance is consistent with the co-dominant type. For one pair of the reciprocal crosses, two MMW parental bands (MW: 71,000 and 66,000) seemed absent in the F1 seed patterns while a new band with an intermediate, apparent MW (68,000) appears. This phenomenon was observed when the glutenins analyzed by electrophoresis were previously separated from other endosperm proteins, and not when they were directly extracted from the ground seed. We assume that the extraction can cause interactions between moieties attached to the subunits and lead to the formation of a complex having an intermediate electrophoretic mobility.
Original language | English |
---|---|
Pages (from-to) | 103-107 |
Number of pages | 5 |
Journal | Theoretical And Applied Genetics |
Volume | 64 |
Issue number | 2 |
DOIs | |
Publication status | Published - Jan 1983 |
Externally published | Yes |
Keywords
- Bread-making
- Co-dominance
- Glutenin
- Wheat
ASJC Scopus subject areas
- Genetics
- Agronomy and Crop Science
- Biotechnology