Abstract
Background/Aims: Hepatocellular carcinoma is a very common malignancy and is highly chemoresistant to currently available chemotherapeutic agents. We isolated a marine prostanoid, bromovulone III, from soft coral Clavularia viridis and found that it displayed effective anti-tumor activity in human hepatocellular carcinoma. The anti-tumor mechanism has been delineated in this study. Methods: Anti-tumor efficacy and apoptotic cell death were examined by sulforhodamine B and Hoechst 33342 assays. Rhodamine 123 was used to measure the change of mitochondrial membrane potential. Immunoprecipitation and Western blotting detect the involvement of several apoptosis-related proteins. Electron microscopic examination detects the morphological change of mitochondria and endoplasmic reticulum (ER). Results: Bromovulone III primarily induced mitochondria-related activation of caspase-9 and -3 in several tumor types, such as prostate cancer PC-3 and acute promyelocytic leukemia HL-60 cells. However, it primarily induced the activation of m-calpain, caspase-12, and transcription factor CHOP/GADD153 in hepatocellular carcinoma Hep3B cells, suggesting the involvement of ER stress. Furthermore, a secondary mitochondrial swelling and depolarization of mitochondrial membrane potential were subsequently triggered after ER stress, suggesting the crosstalk between ER and mitochondria. Conclusions: It is suggested that bromovulone III induces apoptosis in Hep3B cells through a mechanism that induces ER stress and leads to activation of CHOP/GADD153 and caspase-12.
Original language | English |
---|---|
Pages (from-to) | 679-686 |
Number of pages | 8 |
Journal | Journal of Hepatology |
Volume | 43 |
Issue number | 4 |
DOIs | |
Publication status | Published - Oct 2005 |
Keywords
- CHOP/GADD153
- ER stress
- Hepatocellular carcinoma
- Mcl-1
ASJC Scopus subject areas
- Hepatology