Abstract
Apoptosis is induced in cancer cells and tumor xenografts by the thyroid hormone analogue tetraiodothyroacetic acid (tetrac) or chemically modified forms of tetrac. The effect is initiated at a hormone receptor on the extracellular domain of plasma membrane integrin αvβ3. The tumor response to tetrac includes 80% reduction in size of glioblastoma xenograft in two weeks of treatment, with absence of residual apoptotic cancer cell debris; this is consistent with efferocytosis. The molecular basis for efferocytosis linked to tetrac is incompletely understood, but several factors are proposed to play roles. Tetrac-based anticancer agents are pro-apoptotic by multiple intrinsic and extrinsic pathways and differential effects on specific gene expression, e.g., downregulation of the X-linked inhibitor of apoptosis (XIAP) gene and upregulation of pro-apoptotic chemokine gene, CXCL10. Tetrac also enhances transcription of chemokine CXCR4, which is relevant to macrophage function. Tetrac may locally control the conformation of phagocyte plasma membrane integrin αvβ3; this is a cell surface recognition system for apoptotic debris that contains phagocytosis signals. How tetrac may facilitate the catabolism of the engulfed apoptotic cell debris requires additional investigation.
Original language | English |
---|---|
Article number | 745327 |
Journal | Frontiers in Endocrinology |
Volume | 13 |
DOIs | |
Publication status | Published - Mar 4 2022 |
Keywords
- chemokine
- efferocytosis
- integrin αvβ3
- phagocytosis
- tetraiodothyroacetic acid (tetrac)
ASJC Scopus subject areas
- Endocrinology, Diabetes and Metabolism