Impacts of Salmonella enterica serovar typhimurium and its speG gene on the transcriptomes of in vitro M cells and Caco-2 cells

Ke Chuan Wang, Chih Hung Huang, Ching Jou Huang, Shiuh Bin Fang

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Microfold or membranous (M) cells are specialized intestinal epithelial cells responsible for host immunity. The speG mutant of Salmonella Typhimurium (S. Typhimurium) is a nonreplicating strain within human cells to be a candidate vaccine vector for interacting with M cells. We conducted this study to identify the genes are differently expressed between in vitro M cells and Caco-2 cells, and to determine whether S. Typhimurium and speG affect the transcriptomes of both cell types. In vitro M cells and Caco-2 cells were infected with wild-type (WT) S. Typhimurium, its ΔspeG mutant, or none for 1 h for RNA microarrays; the transcriptomes among the 6 pools were pairwisely compared. Genetic loci encoding scaffold (e.g., HSCHR7-CTG4-4, HSCHR9-CTG9-35), long noncoding RNA, membrane-associated protein (PITPNB), neuron-related proteins (OR8D1, OR10G9, and NTNG2), and transporter proteins (MICU2 and SLC28A1) were significantly upregulated in uninfected M cells compared with uninfected Caco-2 cells; and their encoding proteins are promising M-cell markers. Significantly upregulated HSCHR7-CTG4-4 of uninfected in vitro M cells were speGindependently downregulated by S. Typhimurium infection that is a remarkable change representing an important but unreported characteristic of M cells. The immune responses of in vitro M cells and Caco-2 cells can differ and reply on speG or not, with speG-dependent regulation of KYL4, SCTR, IL6, TNF, and CELF4 in Caco-2 cells, JUN, KLF6, and KCTD11 in M cells, or speG-independent modulation of ZFP36 in both cells. This study facilitates understanding of the immune responses of in vitro M cells after administering the S. Typhimurium ΔspeG mutant as a future vaccine vector.

Original languageEnglish
Article numbere0153444
JournalPLoS ONE
Volume11
Issue number4
DOIs
Publication statusPublished - Apr 2016

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint

Dive into the research topics of 'Impacts of Salmonella enterica serovar typhimurium and its speG gene on the transcriptomes of in vitro M cells and Caco-2 cells'. Together they form a unique fingerprint.

Cite this