TY - JOUR
T1 - IL-17F-induced IL-11 release in bronchial epithelial cells via MSK1-CREB pathway
AU - Kawaguchi, Mio
AU - Fujita, Junichi
AU - Kokubu, Fumio
AU - Huang, Shau Ku
AU - Homma, Tetsuya
AU - Matsukura, Satoshi
AU - Adachi, Mitsuru
AU - Hizawa, Nobuyuki
PY - 2009/5
Y1 - 2009/5
N2 - IL-17F is involved in asthma, but its biological function and signaling pathway have not been fully elucidated. IL-11 is clearly expressed in the airway of patients with allergic airway diseases such as asthma and plays an important role in airway remodeling and inflammation. Therefore, we investigated the expression of IL-11 by IL-17F in bronchial epithelial cells. Bronchial epithelial cells were cultured in the presence or absence of IL-17F and/or Th2 cytokines (IL-4 and IL-13) or various kinase inhibitors to analyze the expression of IL-11. Next, activation of mitogen- and stress-activated protein kinase (MSK) 1 by IL-17F was investigated. Moreover, the effect of short interfering RNAs (siRNAs) targeting MSK1 and cAMP response element binding protein (CREB) on IL-17F-induced IL-11 expression was investigated. IL-17F induced IL-11 expression, whereas the costimulation with IL-4 and IL-13 augmented this effect even further. MEK inhibitors PD-98059, U0126, and Raf1 kinase inhibitor I, significantly inhibited IL-11 production, whereas overexpression of a Raf1 dominant-negative mutant inhibited its expression. IL-17F clearly phosphorylated MSK1, whereas PD-98059 inhibited the phosphorylation of IL-17F-induced MSK1. Both MSK1 inhibitors Ro-31-8220 and H89 significantly blocked IL-11 expression. Moreover, transfection of the cells with siRNAs targeting MSK1 inhibited activation of CREB, and the siRNAs targeting MSK1 and CREB blocked expression of IL-11. These data suggest that IL-17F may be involved in airway inflammation and remodeling via the induction of IL-11, and RafI-MEK1/2-ERK1/2-MSK1-CREB is identified as a novel signaling pathway participating in this process. Therefore, the IL-17F/IL-11 axis may be a valuable therapeutic target for asthma.
AB - IL-17F is involved in asthma, but its biological function and signaling pathway have not been fully elucidated. IL-11 is clearly expressed in the airway of patients with allergic airway diseases such as asthma and plays an important role in airway remodeling and inflammation. Therefore, we investigated the expression of IL-11 by IL-17F in bronchial epithelial cells. Bronchial epithelial cells were cultured in the presence or absence of IL-17F and/or Th2 cytokines (IL-4 and IL-13) or various kinase inhibitors to analyze the expression of IL-11. Next, activation of mitogen- and stress-activated protein kinase (MSK) 1 by IL-17F was investigated. Moreover, the effect of short interfering RNAs (siRNAs) targeting MSK1 and cAMP response element binding protein (CREB) on IL-17F-induced IL-11 expression was investigated. IL-17F induced IL-11 expression, whereas the costimulation with IL-4 and IL-13 augmented this effect even further. MEK inhibitors PD-98059, U0126, and Raf1 kinase inhibitor I, significantly inhibited IL-11 production, whereas overexpression of a Raf1 dominant-negative mutant inhibited its expression. IL-17F clearly phosphorylated MSK1, whereas PD-98059 inhibited the phosphorylation of IL-17F-induced MSK1. Both MSK1 inhibitors Ro-31-8220 and H89 significantly blocked IL-11 expression. Moreover, transfection of the cells with siRNAs targeting MSK1 inhibited activation of CREB, and the siRNAs targeting MSK1 and CREB blocked expression of IL-11. These data suggest that IL-17F may be involved in airway inflammation and remodeling via the induction of IL-11, and RafI-MEK1/2-ERK1/2-MSK1-CREB is identified as a novel signaling pathway participating in this process. Therefore, the IL-17F/IL-11 axis may be a valuable therapeutic target for asthma.
KW - Asthma
UR - http://www.scopus.com/inward/record.url?scp=66149184426&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=66149184426&partnerID=8YFLogxK
U2 - 10.1152/ajplung.90607.2008
DO - 10.1152/ajplung.90607.2008
M3 - Article
C2 - 19251839
AN - SCOPUS:66149184426
SN - 1040-0605
VL - 296
SP - L804-L810
JO - American Journal of Physiology - Lung Cellular and Molecular Physiology
JF - American Journal of Physiology - Lung Cellular and Molecular Physiology
IS - 5
ER -