TY - JOUR
T1 - Identification of a Novel Theranostic Signature of Metabolic and Immune-Inflammatory Dysregulation in Myocardial Infarction, and the Potential Therapeutic Properties of Ovatodiolide, a Diterpenoid Derivative
AU - Wu, Alexander T.H.
AU - Lawal, Bashir
AU - Tzeng, Yew Min
AU - Shih, Chun Che
AU - Shih, Chun Ming
N1 - Funding Information:
Funding: A.T.H.W. is funded by the Ministry of Education, Taipei Medical University (DP2-110-21121-03-C-09 and DP2-110-21121-01-H-03-03).
Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/2/1
Y1 - 2022/2/1
N2 - Myocardial infarction (MI) is a multifactorial global disease, recognized as one of the leading causes of cardiovascular morbidity and mortality. Timely and correct diagnoses and effective treatments could significantly reduce incidence of complications and improve patient prognoses. In this study, seven unconventional differentially expressed genes (DEGs) (MAN2A2, TNFRSF12A, SPP1, CSNK1D, PLAUR, PFKFB3, and CXCL16, collectively termed the MTSCPPC signature) were identified through integrating DEGs from six MI microarray datasets. The pathological and theranostic roles of the MTSCPPC signature in MI were subsequently analyzed. We evaluated interactions of the MTSCPPC signature with ovatodiolide, a bioactive compound isolated from Anisomeles indica (L.) Kuntze, using in silico molecular docking tools and compared it to specific inhibitors of the members of the MTSCPPC signature. Single-cell transcriptomic analysis of the public databases revealed high expression levels of the MTSCPPC signature in immune cells of adult human hearts during an MI event. The MTSCPPC signature was significantly associated with the cytokine–cytokine receptor interactions, chemokine signaling, immune and inflammatory responses, and metabolic dysregulation in MI. Analysis of a micro (mi)RNA regulatory network of the MTSCPPC signature suggested post-transcriptional activation and the roles of miRNAs in the pathology of MI. Our molecular docking analysis suggested a higher potential for ovatodiolide to target MAN2A2, CSNK1D, and TNFRSF12A. Collectively, the results derived from the present study further advance our understanding of the complex regulatory mechanisms of MI and provide a potential MI theranostic signature with ovatodiolide as a therapeutic candidate.
AB - Myocardial infarction (MI) is a multifactorial global disease, recognized as one of the leading causes of cardiovascular morbidity and mortality. Timely and correct diagnoses and effective treatments could significantly reduce incidence of complications and improve patient prognoses. In this study, seven unconventional differentially expressed genes (DEGs) (MAN2A2, TNFRSF12A, SPP1, CSNK1D, PLAUR, PFKFB3, and CXCL16, collectively termed the MTSCPPC signature) were identified through integrating DEGs from six MI microarray datasets. The pathological and theranostic roles of the MTSCPPC signature in MI were subsequently analyzed. We evaluated interactions of the MTSCPPC signature with ovatodiolide, a bioactive compound isolated from Anisomeles indica (L.) Kuntze, using in silico molecular docking tools and compared it to specific inhibitors of the members of the MTSCPPC signature. Single-cell transcriptomic analysis of the public databases revealed high expression levels of the MTSCPPC signature in immune cells of adult human hearts during an MI event. The MTSCPPC signature was significantly associated with the cytokine–cytokine receptor interactions, chemokine signaling, immune and inflammatory responses, and metabolic dysregulation in MI. Analysis of a micro (mi)RNA regulatory network of the MTSCPPC signature suggested post-transcriptional activation and the roles of miRNAs in the pathology of MI. Our molecular docking analysis suggested a higher potential for ovatodiolide to target MAN2A2, CSNK1D, and TNFRSF12A. Collectively, the results derived from the present study further advance our understanding of the complex regulatory mechanisms of MI and provide a potential MI theranostic signature with ovatodiolide as a therapeutic candidate.
KW - DEG
KW - Inflammatory and metabolic dysregulation
KW - MiRNA
KW - Myocardial infarction
KW - Ovatodiolide
KW - Theranostic
UR - http://www.scopus.com/inward/record.url?scp=85123308314&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85123308314&partnerID=8YFLogxK
U2 - 10.3390/ijms23031281
DO - 10.3390/ijms23031281
M3 - Article
AN - SCOPUS:85123308314
SN - 1661-6596
VL - 23
JO - International journal of molecular sciences
JF - International journal of molecular sciences
IS - 3
M1 - 1281
ER -