Background: Robot-assisted gait training (RAGT) is a practical treatment that can complement conventional rehabilitation by providing high-intensity repetitive training for patients with stroke. RAGT systems are usually either of the end-effector or exoskeleton types. We developed a novel hybrid RAGT system that leverages the advantages of both types. Objective: This single-blind randomized controlled trial evaluated the beneficial effects of the novel RAGT system both immediately after the intervention and at the 3-month follow-up in nonambulatory patients with subacute stroke. Methods: We recruited 40 patients with subacute stroke who were equally randomized to receive conventional rehabilitation either alone or with the addition of 15 RAGT sessions. We assessed lower-extremity motor function, balance, and gait performance by using the following tools: active range of motion (AROM), manual muscle test (MMT), the Fugl–Meyer Assessment (FMA) lower-extremity subscale (FMA-LE) and total (FMA-total), Postural Assessment Scale for Stroke (PASS), Berg Balance Scale (BBS), Tinetti Performance-Oriented Mobility Assessment (POMA) balance and gait subscores, and the 3-m and 6-m walking speed and Timed Up and Go (TUG) tests. These measurements were performed before and after the intervention and at the 3-month follow-up. Results: Both groups demonstrated significant within-group changes in the AROM, MMT, FMA-LE, FMA-total, PASS, BBS, POMA, TUG, and 3-m and 6-m walking speed tests before and after intervention and at the 3-month follow-up (p < 0.05). The RAGT group significantly outperformed the control group only in the FMA-LE (p = 0.014) and total (p = 0.002) assessments. Conclusion: Although the novel hybrid RAGT is effective, strong evidence supporting its clinical effectiveness relative to controls in those with substantial leg dysfunction after stroke remains elusive. Trial registration The study was registered with an International Standard Randomized Controlled Trial Number, ISRCTN, ISRCTN15088682. Registered retrospectively on September 16, 2016, at https://www.isrctn.com/ISRCTN15088682

Original languageEnglish
Article number99
JournalJournal of NeuroEngineering and Rehabilitation
Issue number1
Publication statusPublished - Dec 2022


  • Balance
  • Rehabilitation
  • Robot-assisted gait training
  • Stroke

ASJC Scopus subject areas

  • Rehabilitation
  • Health Informatics


Dive into the research topics of 'Hybrid robot-assisted gait training for motor function in subacute stroke: a single-blind randomized controlled trial'. Together they form a unique fingerprint.

Cite this