TY - JOUR
T1 - Human 8-oxoguanine DNA glycosylase 1 mRNA expression as an oxidative stress exposure biomarker of cooking oil fumes
AU - Cherng, Shur Hueih
AU - Huang, Kuo Hao
AU - Yang, Sen Chih
AU - Wu, Tzu Chin
AU - Yang, Jia Ling
AU - Lee, Huei
N1 - Funding Information:
This work was supported by grant DOH89-TD-1045 from the National Health Research Institute, Department of Health, the Executive Yuan, Republic of China, and grant NSC 89-2314-B-040-027 from National Science Council, the Executive Yuan, Republic of China. We thank Dr. Hui-Ling Chiou for her editorial assistance.
PY - 2002
Y1 - 2002
N2 - Epidemiological studies have indicated that the exposure to carcinogenic components formed during the cooking of food might be associated with lung cancer risk of Chinese women. Previous studies have confirmed that cooking oil fumes from frying fish (COF) contained relatively high amount of benzo[a]pyrene, 2-methyl-3,8-dimethylimidazo[4,5-f] qunoxaline, benzene, and 1,3-butadiene, reported in fumes from heated soybean oil. Thus, we consider that oxidative stress induced by COF may play a role in lung cancer development among Chinese women. To verify whether the oxidative DNA damage was induced by COF, high-performance liquid chromatography (HPLC) analysis data showed that the levels of 8-hydroxydeoxyguanine (8-OH dG) were increased in a dose-dependent manner when calf thymus DNA reacted with various concentrations of COF. Since human 8-oxoguanine DNA glycosylase 1 (hOGG1) was a repair enzyme for removing 8-OH dG from damaged DNA, we hypothesized that hOGG1 mRNA may be used to assess the risk of oxidative damage induced by the exposure of COF. The results from reverse-transcription polymerase chain reaction showed that the hOGG 1 mRNA expression was induced by hydrogen peroxide (H2O2) and COF in human lung adenocarcinoma CL-3 cells. To elucidate whether hOGG1 mRNA expression was an exposure biomarker of COF, a cross-sectional study of 238 subjects including 94 professional cooks, 43 housewives, and 101 COF-nonexposed control subjects was conducted. The hOGG1 mRNA expression frequencies of COF-exposed cooks (27 of 94, 28.7%) and housewives (6 of 43, 14%) were significantly higher than those of control subjects (4 of 101, 4%). After adjusting for age, sex, and smoking and drinking status, the odds risks (ORs) of housewives versus control and cooks versus control were 3.94 (95% confidence interval [CI] = 0.95-16.62) and 10.12 (95% CI = 2.83-36.15), respectively. These results indicated that hOGG1 may be adequate to act as an exposure biomarker to assess the oxidative DNA damage induced by COF. This also suggests that oxidative stress induced by COF may play a role in lung cancer development among Chinese women.
AB - Epidemiological studies have indicated that the exposure to carcinogenic components formed during the cooking of food might be associated with lung cancer risk of Chinese women. Previous studies have confirmed that cooking oil fumes from frying fish (COF) contained relatively high amount of benzo[a]pyrene, 2-methyl-3,8-dimethylimidazo[4,5-f] qunoxaline, benzene, and 1,3-butadiene, reported in fumes from heated soybean oil. Thus, we consider that oxidative stress induced by COF may play a role in lung cancer development among Chinese women. To verify whether the oxidative DNA damage was induced by COF, high-performance liquid chromatography (HPLC) analysis data showed that the levels of 8-hydroxydeoxyguanine (8-OH dG) were increased in a dose-dependent manner when calf thymus DNA reacted with various concentrations of COF. Since human 8-oxoguanine DNA glycosylase 1 (hOGG1) was a repair enzyme for removing 8-OH dG from damaged DNA, we hypothesized that hOGG1 mRNA may be used to assess the risk of oxidative damage induced by the exposure of COF. The results from reverse-transcription polymerase chain reaction showed that the hOGG 1 mRNA expression was induced by hydrogen peroxide (H2O2) and COF in human lung adenocarcinoma CL-3 cells. To elucidate whether hOGG1 mRNA expression was an exposure biomarker of COF, a cross-sectional study of 238 subjects including 94 professional cooks, 43 housewives, and 101 COF-nonexposed control subjects was conducted. The hOGG1 mRNA expression frequencies of COF-exposed cooks (27 of 94, 28.7%) and housewives (6 of 43, 14%) were significantly higher than those of control subjects (4 of 101, 4%). After adjusting for age, sex, and smoking and drinking status, the odds risks (ORs) of housewives versus control and cooks versus control were 3.94 (95% confidence interval [CI] = 0.95-16.62) and 10.12 (95% CI = 2.83-36.15), respectively. These results indicated that hOGG1 may be adequate to act as an exposure biomarker to assess the oxidative DNA damage induced by COF. This also suggests that oxidative stress induced by COF may play a role in lung cancer development among Chinese women.
UR - http://www.scopus.com/inward/record.url?scp=0036120739&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036120739&partnerID=8YFLogxK
U2 - 10.1080/15287390252800855
DO - 10.1080/15287390252800855
M3 - Article
C2 - 11911490
AN - SCOPUS:0036120739
SN - 1528-7394
VL - 65
SP - 265
EP - 278
JO - Journal of Toxicology and Environmental Health - Part A
JF - Journal of Toxicology and Environmental Health - Part A
IS - 3-4
ER -