TY - JOUR
T1 - Histone deacetylase inhibition reduces pulmonary vein arrhythmogenesis through calcium regulation
AU - Lkhagva, Baigalmaa
AU - Chang, Shih Lin
AU - Chen, Yao Chang
AU - Kao, Yu Hsun
AU - Lin, Yung Kuo
AU - Chiu, Cindy Tzu Hsuan
AU - Chen, Shih Ann
AU - Chen, Yi Jen
N1 - Funding Information:
The present work was supported by grants from Taipei Medical University, Wan Fang Hospital (103swf-10, 103-wf-eva-02 and 102-wf-eva-01), and the Ministry of Science and Technology, Taiwan (MOST 100-2628-B-038-001-MY4, 102-2628-B-038-002-MY3, and 102-2325-B-010-005).
Publisher Copyright:
© 2014 Elsevier Ireland Ltd. All rights reserved.
PY - 2014/12/20
Y1 - 2014/12/20
N2 - Pulmonary veins (PVs) play a critical role in the pathophysiology of atrial fibrillation (AF). Histone deacetylases (HDACs) are vital to calcium homeostasis and AF genesis. However, the electrophysiological effects of HDAC inhibition were unclear. This study evaluated whether HDAC inhibition can regulate PV electrical activity through calcium modulation. Whole-cell patch-clamp, confocal microscopic with fluorescence, and Western blot were used to evaluate electrophysiological characteristics and Ca2 + dynamics in isolated rabbit PV cardiomyocytes with and without MPT0E014 (a pan HDAC inhibitor), MS-275 (HDAC1 and 3 inhibitor), and MC-1568 (HDAC4 and 6 inhibitor) for 5 ~ 8 h. Atrial electrical activity and induced-AF (rapid atrial pacing and acetylcholine infusion) were measured in rabbits with and without MPT0E014 (10 mg/kg treated for 5 hours) in vivo. MPT0E014 (1 μM)-treated PV cardiomyocytes (n = 12) had slower beating rates (2.1 ± 0.2 vs. 2.8 ± 0.1 Hz, p < 0.05) than control PV cardiomyocytes. However, control (n = 11) and MPT0E014 (1 μM)-treated (n = 12) SAN cardiomyocytes had similar beating rates (3.2 ± 0.2 vs. 2.9 ± 0.3 Hz). MS-275-treated PV cardiomyocytes (n = 12, 2.3 ± 0.2 Hz), but not MC-1568-treated PV cardiomyocytes (n = 14, 3.1 ± 0.3 Hz) had slower beating rates than control PV cardiomocytes. MPT0E014-treated PV cardiomyocytes (n = 14) had a lower frequency (2.4 ± 0.6 vs. 0.3 ± 0.1 spark/mm/s, p < 0.05) of Ca2 + sparks than control PV (n = 17) cardiomyocytes. As compared to control, MPT0E014-treated PV cardiomyocytes had reduced Ca2 + transient amplitudes, sodium-calcium exchanger currents, and ryanodine receptor expressions. Moreover, MPT0E014-treated rabbits had less AF and shorter AF duration than control rabbits. In conclusions, HDAC inhibition reduced PV arrhythmogenesis and AF inducibility with modulation on calcium homeostasis.. All rights reserved.
AB - Pulmonary veins (PVs) play a critical role in the pathophysiology of atrial fibrillation (AF). Histone deacetylases (HDACs) are vital to calcium homeostasis and AF genesis. However, the electrophysiological effects of HDAC inhibition were unclear. This study evaluated whether HDAC inhibition can regulate PV electrical activity through calcium modulation. Whole-cell patch-clamp, confocal microscopic with fluorescence, and Western blot were used to evaluate electrophysiological characteristics and Ca2 + dynamics in isolated rabbit PV cardiomyocytes with and without MPT0E014 (a pan HDAC inhibitor), MS-275 (HDAC1 and 3 inhibitor), and MC-1568 (HDAC4 and 6 inhibitor) for 5 ~ 8 h. Atrial electrical activity and induced-AF (rapid atrial pacing and acetylcholine infusion) were measured in rabbits with and without MPT0E014 (10 mg/kg treated for 5 hours) in vivo. MPT0E014 (1 μM)-treated PV cardiomyocytes (n = 12) had slower beating rates (2.1 ± 0.2 vs. 2.8 ± 0.1 Hz, p < 0.05) than control PV cardiomyocytes. However, control (n = 11) and MPT0E014 (1 μM)-treated (n = 12) SAN cardiomyocytes had similar beating rates (3.2 ± 0.2 vs. 2.9 ± 0.3 Hz). MS-275-treated PV cardiomyocytes (n = 12, 2.3 ± 0.2 Hz), but not MC-1568-treated PV cardiomyocytes (n = 14, 3.1 ± 0.3 Hz) had slower beating rates than control PV cardiomocytes. MPT0E014-treated PV cardiomyocytes (n = 14) had a lower frequency (2.4 ± 0.6 vs. 0.3 ± 0.1 spark/mm/s, p < 0.05) of Ca2 + sparks than control PV (n = 17) cardiomyocytes. As compared to control, MPT0E014-treated PV cardiomyocytes had reduced Ca2 + transient amplitudes, sodium-calcium exchanger currents, and ryanodine receptor expressions. Moreover, MPT0E014-treated rabbits had less AF and shorter AF duration than control rabbits. In conclusions, HDAC inhibition reduced PV arrhythmogenesis and AF inducibility with modulation on calcium homeostasis.. All rights reserved.
KW - Atrial fibrillation
KW - Calcium homeostasis
KW - Histone deacetylase inhibition
KW - Pulmonary vein
UR - http://www.scopus.com/inward/record.url?scp=84920026023&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84920026023&partnerID=8YFLogxK
U2 - 10.1016/j.ijcard.2014.09.175
DO - 10.1016/j.ijcard.2014.09.175
M3 - Article
C2 - 25449511
AN - SCOPUS:84920026023
SN - 0167-5273
VL - 177
SP - 982
EP - 989
JO - International Journal of Cardiology
JF - International Journal of Cardiology
IS - 3
ER -