Abstract
We describe a biomimetic mode of insoluble signaling stimulation to provide target delivery of bone morphogenetic protein-2 (BMP-2), with the aim of prolonging the retention of BMP-2 use in bone tissue engineering and to enable its localized release in response to cellular activity. In our novel localization process, we used heterobifunctional acrylate-N-hydroxysuccinimide poly(ethylcne glycol) (PEG) as a spacer to tether BMP-2 onto a poly(lactide-co-glycolide) scaffold. Use of PEG-tethered BMP-2 was feasible because BMP-2 retained its activity after covalent conjugation. The PEG-tethered BMP-2 conjugate sustained stimulation and retained its mitogenic activity, notably affecting pluripotent stem cell proliferation and differentiation. We seeded the scaffolds with bone marrow-derived mesenchymal stromal cells as progenitor cells to evaluate their morphology and phenotypic expression. We also created bilateral, full-thickness cranial defects in rabbits to investigate the osteogenic effect of cultured mesenchymal stromal cells on bone regeneration in vivo. Histomorphometry and histology demonstrated that the PEG-tethered BMP-2 conjugate enhanced de novo bone formation after surgery. Our work revealed the potential for biomimetic surface engineering by entrapping signaling growth factor to stimulate osteogenesis. Our technique may provide a new platform for bone-engineered stem cell therapies.
Original language | English |
---|---|
Pages (from-to) | 1113-1124 |
Number of pages | 12 |
Journal | Tissue Engineering |
Volume | 13 |
Issue number | 5 |
DOIs | |
Publication status | Published - May 2007 |
Externally published | Yes |
ASJC Scopus subject areas
- Biophysics
- Biotechnology
- Cell Biology