TY - JOUR
T1 - Hemodynamics and Tissue Optical Properties in Bimodal Infarctions Induced by Middle Cerebral Artery Occlusion
AU - Wu, Chun Wei
AU - Chen, Jia Jin
AU - Lin, Chou Ching K.
AU - Chen, Chien An
AU - Wu, Chun Ie
AU - Hwang, Ing Shiou
AU - Hsieh, Tsung Hsun
AU - Lin, Bor Shing
AU - Peng, Chih Wei
N1 - Funding Information:
This research was funded by National Health Research Institutes in Taiwan, grant number EX103-10139EI; and National Science and Technology Council in Taiwan, grant number 104-2314-B-006-007-MY3, 101-2221-E-006-006-MY3, 110-2314-B-038-001, 110-2811-E-038-500-MY3, 110-2314-B-305-001, 109-2314-B-305-001, 109-2221-E-305-001-MY2, 109-2221-E-038-005-MY3, and 109-2314-B-038-132. This work was also financially supported by the University System of Taipei Joint Research Program (USTP-NTUT-TMU-111-03 and A-111-029) and the Higher Education Sprout Project (DP2-111-21121-01-N-03-04) of the Ministry of Education (MOE) in Taiwan.
Publisher Copyright:
© 2022 by the authors.
PY - 2022/9
Y1 - 2022/9
N2 - Various infarct sizes induced by middle cerebral artery occlusion (MCAO) generate inconsistent outcomes for stroke preclinical study. Monitoring cerebral hemodynamics may help to verify the outcome of MCAO. The aim of this study was to investigate the changes in brain tissue optical properties by frequency-domain near-infrared spectroscopy (FD-NIRS), and establish the relationship between cerebral hemodynamics and infarct variation in MCAO model. The rats were undergone transient MCAO using intraluminal filament. The optical properties and hemodynamics were measured by placing the FD-NIRS probes on the scalp of the head before, during, and at various time-courses after MCAO. Bimodal infarction severities were observed after the same 90-min MCAO condition. Significant decreases in concentrations of oxygenated hemoglobin ([HbO]) and total hemoglobin ([HbT]), tissue oxygenation saturation (StO2), absorption coefficient (μa) at 830 nm, and reduced scattering coefficient (μs’) at both 690 and 830 nm were detected during the occlusion in the severe infarction but not the mild one. Of note, the significant increases in [HbO], [HbT], StO2, and μa at both 690 and 830 nm were found on day 3; and increases in μs’ at both 690 and 830 nm were found on day 2 and day 3 after MCAO, respectively. The interhemispheric correlation coefficient (IHCC) was computed from low-frequency hemodynamic oscillation of both hemispheres. Lower IHCCs standing for interhemispheric desynchronizations were found in both mild and severe infarction during occlusion, and only in severe infarction after reperfusion. Our finding supports that sequential FD-NIRS parameters may associated with the severity of the infarction in MCAO model, and the consequent pathologies such as vascular dysfunction and brain edema. Further study is required to validate the potential use of FD-NIRS as a monitor for MCAO verification.
AB - Various infarct sizes induced by middle cerebral artery occlusion (MCAO) generate inconsistent outcomes for stroke preclinical study. Monitoring cerebral hemodynamics may help to verify the outcome of MCAO. The aim of this study was to investigate the changes in brain tissue optical properties by frequency-domain near-infrared spectroscopy (FD-NIRS), and establish the relationship between cerebral hemodynamics and infarct variation in MCAO model. The rats were undergone transient MCAO using intraluminal filament. The optical properties and hemodynamics were measured by placing the FD-NIRS probes on the scalp of the head before, during, and at various time-courses after MCAO. Bimodal infarction severities were observed after the same 90-min MCAO condition. Significant decreases in concentrations of oxygenated hemoglobin ([HbO]) and total hemoglobin ([HbT]), tissue oxygenation saturation (StO2), absorption coefficient (μa) at 830 nm, and reduced scattering coefficient (μs’) at both 690 and 830 nm were detected during the occlusion in the severe infarction but not the mild one. Of note, the significant increases in [HbO], [HbT], StO2, and μa at both 690 and 830 nm were found on day 3; and increases in μs’ at both 690 and 830 nm were found on day 2 and day 3 after MCAO, respectively. The interhemispheric correlation coefficient (IHCC) was computed from low-frequency hemodynamic oscillation of both hemispheres. Lower IHCCs standing for interhemispheric desynchronizations were found in both mild and severe infarction during occlusion, and only in severe infarction after reperfusion. Our finding supports that sequential FD-NIRS parameters may associated with the severity of the infarction in MCAO model, and the consequent pathologies such as vascular dysfunction and brain edema. Further study is required to validate the potential use of FD-NIRS as a monitor for MCAO verification.
KW - absorption
KW - cerebral blood flow
KW - cerebral hemodynamics
KW - interhemispheric correlation coefficient
KW - ischemic stroke
KW - middle cerebral artery occlusion
KW - near infrared spectroscopy
KW - scattering
UR - http://www.scopus.com/inward/record.url?scp=85138372322&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85138372322&partnerID=8YFLogxK
U2 - 10.3390/ijms231810318
DO - 10.3390/ijms231810318
M3 - Article
C2 - 36142225
AN - SCOPUS:85138372322
SN - 1661-6596
VL - 23
JO - International journal of molecular sciences
JF - International journal of molecular sciences
IS - 18
M1 - 10318
ER -