TY - JOUR
T1 - Glycine regulation of the N-methyl-D-aspartate receptor-gated ion channel in hippocampal membranes
AU - Bonhaus, D. W.
AU - Yeh, G. C.
AU - Skaryak, L.
AU - McNamara, J. O.
N1 - Copyright:
Copyright 2004 Elsevier B.V., All rights reserved.
PY - 1989
Y1 - 1989
N2 - The N-methyl-D-aspartate receptor-gated ion channel (NMDA channel) is regulated by glycine. To examine the interaction of glycine and NMDA receptor ligands on NMDA channel function, we used a biochemical marker of channel opening, [3H]N-(1-[thienyl]cyclohexyl)piperidine (TCP). We quantified [3H]glycine, L-[3H]glutamate, and TCP binding in an identical membrane preparation. This allowed direct comparison of NMDA and glycine receptor occupancy and channel activation. Glycine increased the association and dissociation rates of NMDA-dependent TCP binding to hippocampal membranes, without altering the K(d) or B(max) for TCP binding. Structurally similar amino acids mimicked the action of glycine, with D-isomers being more potent than L-isomers. The potency of glycine in regulating TCP binding matched that for displacing [3H]glycine. Glycine stimulation of TCP binding required the presence of NMDA agonists and was inhibited by the NMDA antagonist D-2-amino-5-phosphonovaleric acid. Glycine stimulation of NMDA-dependent TCP binding was not associated with an increase in agonist binding to the NMDA receptor. Likewise, NMDA stimulation of glycine-dependent TCP binding was not associated with an increase in the binding of glycine to the glycine receptor. These findings permit the following conclusions: 1) glycine stimulates TCP binding solely by increasing the access of TCP to its site in the NMDA channel; 2) TCP binding can be used to quantify glycine regulation of the NMDA channel; 3) a stereospecific glycine receptor, as part of the NMDA receptor-channel complex, regulates NMDA-evoked channel opening by a mechanism not involving increased agonist binding to the NMDA receptor. Thus, it appears that the mechanism of glycine and NMDA receptor regulation of the NMDA channel is analogous to that of a two-key lock; both receptors, by independent and mutually required mechanisms, alter channel conformation to allow ion passage.
AB - The N-methyl-D-aspartate receptor-gated ion channel (NMDA channel) is regulated by glycine. To examine the interaction of glycine and NMDA receptor ligands on NMDA channel function, we used a biochemical marker of channel opening, [3H]N-(1-[thienyl]cyclohexyl)piperidine (TCP). We quantified [3H]glycine, L-[3H]glutamate, and TCP binding in an identical membrane preparation. This allowed direct comparison of NMDA and glycine receptor occupancy and channel activation. Glycine increased the association and dissociation rates of NMDA-dependent TCP binding to hippocampal membranes, without altering the K(d) or B(max) for TCP binding. Structurally similar amino acids mimicked the action of glycine, with D-isomers being more potent than L-isomers. The potency of glycine in regulating TCP binding matched that for displacing [3H]glycine. Glycine stimulation of TCP binding required the presence of NMDA agonists and was inhibited by the NMDA antagonist D-2-amino-5-phosphonovaleric acid. Glycine stimulation of NMDA-dependent TCP binding was not associated with an increase in agonist binding to the NMDA receptor. Likewise, NMDA stimulation of glycine-dependent TCP binding was not associated with an increase in the binding of glycine to the glycine receptor. These findings permit the following conclusions: 1) glycine stimulates TCP binding solely by increasing the access of TCP to its site in the NMDA channel; 2) TCP binding can be used to quantify glycine regulation of the NMDA channel; 3) a stereospecific glycine receptor, as part of the NMDA receptor-channel complex, regulates NMDA-evoked channel opening by a mechanism not involving increased agonist binding to the NMDA receptor. Thus, it appears that the mechanism of glycine and NMDA receptor regulation of the NMDA channel is analogous to that of a two-key lock; both receptors, by independent and mutually required mechanisms, alter channel conformation to allow ion passage.
UR - http://www.scopus.com/inward/record.url?scp=0024453755&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0024453755&partnerID=8YFLogxK
M3 - Article
C2 - 2475759
AN - SCOPUS:0024453755
SN - 0026-895X
VL - 36
SP - 273
EP - 279
JO - Molecular Pharmacology
JF - Molecular Pharmacology
IS - 2
ER -