TY - JOUR
T1 - Glycine N-methyltransferase deficiency affects Niemann-Pick type C2 protein stability and regulates hepatic cholesterol homeostasis.
AU - Liao, Yi Jen
AU - Chen, Tzu Lang
AU - Lee, Tzong Shyuan
AU - Wang, Hsiang An
AU - Wang, Chung Kwe
AU - Liao, Li Ying
AU - Liu, Ren Shyan
AU - Huang, Shiu Feng
AU - Chen, Yi Ming Arthur
N1 - Funding Information:
This study was supported by a grant from the National Science Council of the Republic of China (NSC99-2628-B-010-010-MY3 and NSC100-2325-B-010-008) and a grant from the Genomic Research Center of the National Yang-Ming University given by the Ministry of Education of the Republic of China (Top University and Center Grant). The authors thank Fu-Hui Wang (Molecular and Genetic Imaging Core), Chi-Hung Lin (National Research Program for Genomic Medicine) and Tung-Wei Chen and Chia-Yen Chen (Institute of Microbiology and Immunology, School of Life Science), all at National Yang-Ming University, for technical support.
PY - 2012
Y1 - 2012
N2 - Nonalcoholic fatty liver disease (NAFLD) is associated with the development of metabolic syndromes and hepatocellular carcinoma (HCC). Cholesterol accumulation is related to NAFLD, whereas its detailed mechanism is not fully understood. Previously, we reported that glycine N-methyltransferase (GNMT) knockout (Gnmt(-/-)) mice develop chronic hepatitis and HCC. In this study, we showed that Gnmt(-/-) mice had hyperlipidemia and steatohepatitis. Single photon emission computed tomography images of mice injected with (131)I-labeled 6β-iodocholesterol demonstrated that Gnmt(-/-) mice had slower hepatic cholesterol uptake and excretion rates than wild-type mice. In addition, genes related to cholesterol uptake (scavenger receptor class B type 1 [SR-B1] and ATP-binding cassette A1 [ABCA1]), intracellular trafficking (Niemann-Pick type C1 protein [NPC1] and Niemann-Pick type C2 protein [NPC2]) and excretion (ATP-binding cassette G1 [ABCG1]) were downregulated in Gnmt(-/-) mice. Yeast two-hybrid screenings and coimmunoprecipitation assays elucidated that the C conserved region (81-105 amino acids) of NPC2 interacts with the carboxyl-terminal fragment (171-295 amino acids) of GNMT. Confocal microscopy demonstrated that when cells were treated with low-density lipoprotein, NPC2 was released from lysosomes and interacts with GNMT in the cytosol. Overexpression of GNMT doubled the half-lives of both NPC2 isoforms and reduced cholesterol accumulation in cells. Furthermore, GNMT was downregulated in the liver tissues from patients suffering with NAFLD as well as from mice fed a high-fat diet, high-cholesterol diet or methionine/choline-deficient diet. In conclusion, our study demonstrated that GNMT regulates the homeostasis of cholesterol metabolism, and hepatic cholesterol accumulation may result from downregulation of GNMT and instability of its interactive protein NPC2. Novel therapeutics for steatohepatitis and HCC may be developed by using this concept.
AB - Nonalcoholic fatty liver disease (NAFLD) is associated with the development of metabolic syndromes and hepatocellular carcinoma (HCC). Cholesterol accumulation is related to NAFLD, whereas its detailed mechanism is not fully understood. Previously, we reported that glycine N-methyltransferase (GNMT) knockout (Gnmt(-/-)) mice develop chronic hepatitis and HCC. In this study, we showed that Gnmt(-/-) mice had hyperlipidemia and steatohepatitis. Single photon emission computed tomography images of mice injected with (131)I-labeled 6β-iodocholesterol demonstrated that Gnmt(-/-) mice had slower hepatic cholesterol uptake and excretion rates than wild-type mice. In addition, genes related to cholesterol uptake (scavenger receptor class B type 1 [SR-B1] and ATP-binding cassette A1 [ABCA1]), intracellular trafficking (Niemann-Pick type C1 protein [NPC1] and Niemann-Pick type C2 protein [NPC2]) and excretion (ATP-binding cassette G1 [ABCG1]) were downregulated in Gnmt(-/-) mice. Yeast two-hybrid screenings and coimmunoprecipitation assays elucidated that the C conserved region (81-105 amino acids) of NPC2 interacts with the carboxyl-terminal fragment (171-295 amino acids) of GNMT. Confocal microscopy demonstrated that when cells were treated with low-density lipoprotein, NPC2 was released from lysosomes and interacts with GNMT in the cytosol. Overexpression of GNMT doubled the half-lives of both NPC2 isoforms and reduced cholesterol accumulation in cells. Furthermore, GNMT was downregulated in the liver tissues from patients suffering with NAFLD as well as from mice fed a high-fat diet, high-cholesterol diet or methionine/choline-deficient diet. In conclusion, our study demonstrated that GNMT regulates the homeostasis of cholesterol metabolism, and hepatic cholesterol accumulation may result from downregulation of GNMT and instability of its interactive protein NPC2. Novel therapeutics for steatohepatitis and HCC may be developed by using this concept.
UR - http://www.scopus.com/inward/record.url?scp=84865626577&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84865626577&partnerID=8YFLogxK
U2 - 10.2119/molmed.2011.00258
DO - 10.2119/molmed.2011.00258
M3 - Article
C2 - 22183894
AN - SCOPUS:84865626577
SN - 1076-1551
VL - 18
SP - 412
EP - 422
JO - Molecular medicine (Cambridge, Mass.)
JF - Molecular medicine (Cambridge, Mass.)
IS - 1
ER -