Glucagon-like Peptide-1 Receptor Activation Reduces Pulmonary Vein Arrhythmogenesis and Regulates Calcium Homeostasis

Chao Shun Chan, Fong Jhih Lin, Yao Chang Chen, Yung Kuo Lin, Satoshi Higa, Shih Ann Chen, Yi Jen Chen

Research output: Contribution to journalArticlepeer-review


Glucagon-like peptide-1 (GLP-1) receptor agonists are associated with reduced atrial fibrillation risk, but the mechanisms underlying this association remain unclear. The GLP-1 receptor agonist directly impacts cardiac Ca2+ homeostasis, which is crucial in pulmonary vein (PV, the initiator of atrial fibrillation) arrhythmogenesis. This study investigated the effects of the GLP-1 receptor agonist on PV electrophysiology and Ca2+ homeostasis and elucidated the potential underlying mechanisms. Conventional microelectrodes and whole-cell patch clamp techniques were employed in rabbit PV tissues and single PV cardiomyocytes before and after GLP-1 (7-36) amide, a GLP-1 receptor agonist. Evaluations were conducted both with and without pretreatment with H89 (10 μM, an inhibitor of protein kinase A, PKA), KN93 (1 μM, an inhibitor of Ca2+/calmodulin-dependent protein kinase II, CaMKII), and KB-R7943 (10 μM, an inhibitor of Na+/Ca2+ exchanger, NCX). Results showed that GLP-1 (7-36) amide (at concentrations of 1, 10, and 100 nM) reduced PV spontaneous activity in a concentration-dependent manner without affecting sinoatrial node electrical activity. In single-cell experiments, GLP-1 (7-36) amide (at 10 nM) reduced L-type Ca2+ current, NCX current, and late Na+ current in PV cardiomyocytes without altering Na+ current. Additionally, GLP-1 (7-36) amide (at 10 nM) increased sarcoplasmic reticulum Ca2+ content in PV cardiomyocytes. Furthermore, the antiarrhythmic effects of GLP-1 (7-36) amide on PV automaticity were diminished when pretreated with H89, KN93, or KB-R7943. This suggests that the GLP-1 receptor agonist may exert its antiarrhythmic potential by regulating PKA, CaMKII, and NCX activity, as well as modulating intracellular Ca2+ homeostasis, thereby reducing PV arrhythmogenesis.

Original languageEnglish
Article number13100
JournalInternational journal of molecular sciences
Issue number17
Publication statusPublished - Sept 2023


  • atrial fibrillation
  • glucagon-like peptide-1 receptor agonist
  • pulmonary vein

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry


Dive into the research topics of 'Glucagon-like Peptide-1 Receptor Activation Reduces Pulmonary Vein Arrhythmogenesis and Regulates Calcium Homeostasis'. Together they form a unique fingerprint.

Cite this