Abstract

Pancreatic cancer represents one of the most aggressive types of malignancy due to its high resistance toward most clinically available treatments. The presence of pancreatic cancer stem-like cells (CSCs) has been attributed to the intrinsically high resistance and highly metastatic potential of this disease. Here, we identified and isolated pancreatic CSCs using the side population (SP) method from human pancreatic cancer cell line, PANC-1. We then compared the SP and non-SP PANC-1 cells genetically. PANC-1 SP cells exhibited CSC properties including enhanced self-renewal ability, increased metastatic potential, and resistance toward gemcitabine treatment. These cancer stem-like phenotypes were supported by their enhanced expression of ABCG2, Oct4, and CD44. A traditional plant-derived antioxidant, garcinol, has been implicated for its anticancer properties. Here, we found that garcinol treatment to PANC-1 SP cells significantly suppressed the stem-like properties of PANC-1 SP cells and metastatic potential by downregulating the expression of Mcl-1, EZH2, ABCG2, Gli-1, and Notch1. More importantly, garcinol treatment led to the upregulation of several tumor suppressor microRNAs, and miR-200c increased by garcinol treatment was found to target and downregulate Notch1. Thus, PANC-1 SP cells may serve as a model for studying drug-resistant pancreatic CSCs, and garcinol has the potential as an antagonist against pancreatic CSCs.

Original languageEnglish
Pages (from-to)165-173
Number of pages9
JournalBiotechnology and Applied Biochemistry
Volume64
Issue number2
DOIs
Publication statusPublished - Mar 1 2017

Keywords

  • Drug resistance
  • Garcinol
  • Notch1
  • Pancreatic cancer stem-like cells
  • Side population cells

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Applied Microbiology and Biotechnology
  • Biomedical Engineering
  • Molecular Medicine
  • Drug Discovery
  • Process Chemistry and Technology

Fingerprint

Dive into the research topics of 'Garcinol downregulates notch1 signaling via modulating mir-200c and suppresses oncogenic properties of PANC-1 cancer stem-like cells'. Together they form a unique fingerprint.

Cite this