TY - JOUR
T1 - Fucoidan Attenuates Cardiac Remodeling by Inhibiting Galectin-3 Secretion, Fibrosis, and Inflammation in a Mouse Model of Pressure Overload
AU - Hao, Wen Rui
AU - Cheng, Chun Han
AU - Chen, Huan Yuan
AU - Cheng, Tzu Hurng
AU - Liu, Ju Chi
AU - Chen, Jin Jer
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/12
Y1 - 2024/12
N2 - Background/Objectives: Fucoidan, a sulfated polysaccharide derived from marine algae, is known for its antioxidant and immunomodulatory properties. Galectin-3 (Gal-3), a protein associated with cardiovascular fibrosis, has been identified as a potential therapeutic target in cardiac remodeling. This study aimed to evaluate whether fucoidan could inhibit Gal-3 activity and mitigate cardiac remodeling in a mouse model of pressure overload-induced cardiac hypertrophy. Methods: To test this hypothesis, we used transverse aortic constriction (TAC) surgery to induce pressure overload in normotensive mice, replicating the pathological features of cardiac hypertrophy. Mice were treated with fucoidan at a dose of 1.5 or 7.5 mg/kg/day. In vivo assessments of cardiac function, fibrosis, inflammation, and Gal-3 expression were performed. Results: Pressure overload led to significant upregulation of serum Gal-3 levels, increased cardiac collagen deposition, and elevated markers of fibrosis and inflammation. In mice treated with fucoidan, these effects were significantly attenuated. Fucoidan treatment prevented the upregulation of Gal-3, reduced collagen deposition, and decreased inflammatory cell infiltration, suggesting an inhibition of both fibrosis and inflammation. Conclusions: Fucoidan effectively mitigated the adverse effects of pressure overload in this mouse model, including reduced Gal-3 expression, fibrosis, and inflammation. These findings suggest that fucoidan holds promise as a therapeutic agent for preventing or delaying cardiac remodeling and associated complications, such as fibrosis and inflammation, in pressure overload-induced cardiac hypertrophy. Further research is needed to explore the underlying mechanisms and clinical applicability of fucoidan in cardiac disease.
AB - Background/Objectives: Fucoidan, a sulfated polysaccharide derived from marine algae, is known for its antioxidant and immunomodulatory properties. Galectin-3 (Gal-3), a protein associated with cardiovascular fibrosis, has been identified as a potential therapeutic target in cardiac remodeling. This study aimed to evaluate whether fucoidan could inhibit Gal-3 activity and mitigate cardiac remodeling in a mouse model of pressure overload-induced cardiac hypertrophy. Methods: To test this hypothesis, we used transverse aortic constriction (TAC) surgery to induce pressure overload in normotensive mice, replicating the pathological features of cardiac hypertrophy. Mice were treated with fucoidan at a dose of 1.5 or 7.5 mg/kg/day. In vivo assessments of cardiac function, fibrosis, inflammation, and Gal-3 expression were performed. Results: Pressure overload led to significant upregulation of serum Gal-3 levels, increased cardiac collagen deposition, and elevated markers of fibrosis and inflammation. In mice treated with fucoidan, these effects were significantly attenuated. Fucoidan treatment prevented the upregulation of Gal-3, reduced collagen deposition, and decreased inflammatory cell infiltration, suggesting an inhibition of both fibrosis and inflammation. Conclusions: Fucoidan effectively mitigated the adverse effects of pressure overload in this mouse model, including reduced Gal-3 expression, fibrosis, and inflammation. These findings suggest that fucoidan holds promise as a therapeutic agent for preventing or delaying cardiac remodeling and associated complications, such as fibrosis and inflammation, in pressure overload-induced cardiac hypertrophy. Further research is needed to explore the underlying mechanisms and clinical applicability of fucoidan in cardiac disease.
KW - fibrosis
KW - fucoidan
KW - galectin-3
KW - pressure overload
UR - http://www.scopus.com/inward/record.url?scp=85213211556&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85213211556&partnerID=8YFLogxK
U2 - 10.3390/biomedicines12122847
DO - 10.3390/biomedicines12122847
M3 - Article
AN - SCOPUS:85213211556
SN - 2227-9059
VL - 12
JO - Biomedicines
JF - Biomedicines
IS - 12
M1 - 2847
ER -