Floating spherical Gaussian orbitals based quantum Monte Carlo method in molecular electronic calculations

Shyn Yi Leu, Chung Yuan Mou

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

We report a new method for fixed-node diffusion quantum Monte Carlo calculation in order to improve the time step-size convergence and the fluctuation problems associated with nodes of wave functions. It adopts floating spherical Gaussian orbitals instead of Slater-type orbitals to guide random walkers (psips). They establish harmonic velocity fields under which psips undergo random walks which are simulated exactly according to the Ornstein-Uhlenbeck process. The nodes of this guiding function are used to guide psips in a novel way; as psips approach to a node, they are swept away therefrom. Explicit enforcement of a sink boundary condition is avoided to some extent, and the behavior of the random walks near nodes is efficiently simulated. The method is illustrated by applying to the ground-state energies of H2, LiH, and HF. The results are excellent compared to previous calculations.

Original languageEnglish
Pages (from-to)5910-5918
Number of pages9
JournalThe Journal of Chemical Physics
Volume101
Issue number7
DOIs
Publication statusPublished - 1994
Externally publishedYes

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Floating spherical Gaussian orbitals based quantum Monte Carlo method in molecular electronic calculations'. Together they form a unique fingerprint.

Cite this